HOME 首頁
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運(yùn)營
CASE 服務(wù)案例
NEWS 熱點(diǎn)資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    rfm模型分別代表

    發(fā)布時(shí)間:2023-04-08 05:59:17     稿源: 創(chuàng)意嶺    閱讀: 126        

    大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于rfm模型分別代表的問題,以下是小編對(duì)此問題的歸納整理,讓我們一起來看看吧。

    開始之前先推薦一個(gè)非常厲害的Ai人工智能工具,一鍵生成原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報(bào)告、論文、代碼、作文、做題和對(duì)話答疑等等

    只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁版、PC客戶端

    官網(wǎng):https://ai.de1919.com。

    創(chuàng)意嶺作為行業(yè)內(nèi)優(yōu)秀的企業(yè),服務(wù)客戶遍布全球各地,如需了解SEO相關(guān)業(yè)務(wù)請(qǐng)撥打電話175-8598-2043,或添加微信:1454722008

    本文目錄:

    rfm模型分別代表

    一、基于RFM分析的客戶細(xì)分!讓市場(chǎng)營銷事半功倍!

    市場(chǎng)和運(yùn)營往往絞盡腦汁 做活動(dòng)、上新品、蹭熱點(diǎn)、做營銷,拓渠道,不斷開發(fā)客戶 、 做回訪維系客戶感情 ,除了少數(shù)運(yùn)氣好的之外,大部分效果寥寥,這是為何?這年頭做營銷這么難嗎?

    聰明的營銷人員知道“ 了解客戶 ”和“ 客戶細(xì)分 ”的重要性。營銷人員不僅要著眼于創(chuàng)造更多的訪問量和點(diǎn)擊量(無論是郵件還是站點(diǎn))以提高客戶獲取,還必須遵循從提高點(diǎn)擊率(CTR)轉(zhuǎn)變?yōu)樘岣弑A?,忠誠度并建立客戶關(guān)系的新范式。與其將整個(gè)客戶群作為一個(gè)整體進(jìn)行分析,不如將其劃分為同類群體,了解每個(gè)群體的特征,并使他們參與相關(guān)的活動(dòng),而不是僅根據(jù)客戶年齡或地理位置進(jìn)行客戶細(xì)分。而 RFM分析是市場(chǎng)營銷人員分析客戶行為的最流行、最簡(jiǎn)單、最有效的客戶細(xì)分方法之一。

    R(Recency)最近一次消費(fèi)時(shí)間 :表示用戶最近一次消費(fèi)距離現(xiàn)在的時(shí)間(或截止到統(tǒng)計(jì)周期)。消費(fèi)時(shí)間越近的客戶價(jià)值越大。1年前消費(fèi)過的用戶肯定沒有1周前消費(fèi)過的用戶價(jià)值大。

    F(Frequency)消費(fèi)頻率: 消費(fèi)頻率是指用戶在統(tǒng)計(jì)周期內(nèi)購買商品的次數(shù),經(jīng)常購買的用戶也就是熟客,價(jià)值肯定比偶爾來一次的客戶價(jià)值大。

    M(Monetary)消費(fèi)金額: 消費(fèi)金額是指用戶在統(tǒng)計(jì)周期內(nèi)消費(fèi)的總金額,體現(xiàn)了消費(fèi)者為企業(yè)創(chuàng)利的多少,自然是消費(fèi)越多的用戶價(jià)值越大。

    簡(jiǎn)言之, RFM代表近度,頻率和額度 ,每個(gè)值都與某些關(guān)鍵客戶特征相對(duì)應(yīng)。這些RFM指標(biāo)是客戶行為的重要指標(biāo),因?yàn)轭l率和額度會(huì)影響客戶的生命周期價(jià)值,新近度會(huì)影響保留率,而保留率是忠誠度的衡量標(biāo)準(zhǔn)。

    如果是缺乏金錢交易方面的業(yè)務(wù),例如收視率,讀者人數(shù)等,可以使用" Engagement  "(參與度)代替Monetary。如官網(wǎng)的訪問頻次,微信的交互情況,郵件打開率等。這將導(dǎo)致使用RFE 而不是 RFM。此外,可以根據(jù)指標(biāo)例如跳出率,訪問時(shí)長,訪問的頁面數(shù),每頁所花費(fèi)的時(shí)間等來將Engagement參數(shù)定義為一個(gè)綜合值。

    • 購買的時(shí)間越近,顧客對(duì)促銷的反應(yīng)越積極

    • 顧客購買的頻率越高,他們就越投入和越滿意

    • 消費(fèi)金額區(qū)分了大筆支出的消費(fèi)者和低價(jià)值的購買者

    • 想要提高回購率和留存率,需要時(shí)刻警惕R值

    RFM分析可幫助營銷人員找到以下問題的答案:

    • 誰是您最有價(jià)值的客戶?

    • 導(dǎo)致客戶流失率增多的是哪些客戶?

    • 誰有潛力成為有價(jià)值的客戶?

    • 你的哪些客戶可以保留?

    • 您哪些客戶最有可能對(duì)參與度活動(dòng)做出響應(yīng)?

    • 誰是你不需要關(guān)注的無價(jià)值客戶?

    • 針對(duì)哪些客戶制定哪種發(fā)展、保留、挽回策略?

    通過RFM分析,可以幫助營銷人員實(shí)現(xiàn)客戶細(xì)分;衡量客戶價(jià)值和客戶利潤創(chuàng)收能力;識(shí)別優(yōu)質(zhì)客戶;指定個(gè)性化的溝通和營銷服務(wù);為更多的營銷決策提供有力支持。

    那RFM分析應(yīng)如何開始呢?

    由于R值、F值、M值存在量級(jí)之間的差距,無法直觀的通過加減或平均來衡量用戶價(jià)值,這里我們介紹一種評(píng)分方式,根據(jù)三組數(shù)據(jù)各個(gè)值的特性,采用5分制為各個(gè)數(shù)據(jù)賦予一個(gè)評(píng)分值。

    讓我們通過一個(gè)客戶交易的樣本數(shù)據(jù)集來演示一個(gè)簡(jiǎn)單的RFM分析是如何工作的:

    為了對(duì)此示例進(jìn)行RFM分析,讓我們看看如何根據(jù)每個(gè)RFM屬性分別對(duì)客戶進(jìn)行排名,然后對(duì)這些客戶進(jìn)行評(píng)分。假設(shè)我們使用RFM值從1到5對(duì)這些客戶進(jìn)行排序,R值的評(píng)分機(jī)制是R值越大,評(píng)分越小。

    如上表所示,我們按“Recency”對(duì)客戶進(jìn)行了排序,最新的購買者排在首位。由于為客戶分配的分?jǐn)?shù)是1-5,因此前20%的客戶(客戶ID為12、11、1)的“Recency”分?jǐn)?shù)為5,接下來的20%(客戶ID為15、2、7)的分?jǐn)?shù)為4 , 以此類推。

    同樣,我們可以根據(jù)客戶購買從高到低的“Frequency”對(duì)其進(jìn)行排序,將前20%的“Frequency”得分分配為5,依此類推。對(duì)于“Monetary”因素,對(duì)前20%的客戶(消費(fèi)最多的)分配5分,最低的20%得分為1。這些F和M得分總結(jié)如下:

    RFM得分

    最后,我們可以將這些客戶的R、F和M排名結(jié)合起來得到一個(gè)匯總的RFM得分。 下表中顯示的該RFM得分是各個(gè)R,F(xiàn)和M得分的平均值,是通過對(duì)每個(gè)RFM屬性賦予相等的權(quán)重來獲得的。

    這種簡(jiǎn)單的將客戶從1-5排序的方法最多會(huì)產(chǎn)生125個(gè)不同的RFM單元(5x5x5),范圍從111(最低)到555(最高)。每個(gè)RFM單元的大小不同,依據(jù)客戶的關(guān)鍵習(xí)慣,被捕獲為RFM得分以得出客戶細(xì)分,營銷人員依據(jù)不同得分的客戶制定相應(yīng)的策略。

    顯然,針對(duì)不同行業(yè)的企業(yè)如果僅根據(jù)他們的購買或參與行為將每個(gè)客戶的R,F(xiàn)和M得分平均以獲得RFM細(xì)分市場(chǎng)并不公平。這類平均值只適合于均類數(shù)據(jù),對(duì)于一些不規(guī)則數(shù)據(jù),平均值會(huì)造成很大的誤差, 因此,根據(jù)您的業(yè)務(wù)性質(zhì),您可以科學(xué)增加或減少每個(gè)RFM變量的相對(duì)重要性,以得出最終分?jǐn)?shù)。例如:

    1 .耐用消費(fèi)品行業(yè)

    每筆交易的Monetary通常較高,但Frequency和Recency較低。例如,你不能指望客戶每月購買一臺(tái)冰箱或空調(diào)。在這種情況下,市場(chǎng)營銷人員應(yīng)該更重視Monetary和Recency方面,而不是Frequency方面。

    2 .時(shí)裝/化妝品等零售業(yè)務(wù)

    每月搜索和購買產(chǎn)品的客戶將有更高的Recency和Frequency得分而不是Monetary得分。因此,可以通過給R和F得分賦予比M更大的權(quán)重來計(jì)算RFM得分。

    3 .視頻平臺(tái)等內(nèi)容apps

    追劇狂人相比一般消費(fèi)者擁有更長的觀看時(shí)長。對(duì)于這些狂熱者,“參與度”和Frequency可以比Recency給予更多的重視,而對(duì)于一般人群,可以對(duì)Recency和Frequency給予比Engagement更高的權(quán)重,以得出RFE得分。

    此外,企業(yè)需要針對(duì)自己的行業(yè)特點(diǎn)靈活變通指標(biāo)的采用。比如在金融行業(yè),最近一次購買時(shí)間可能并不適用,此時(shí)可以考慮采用金融產(chǎn)品持有時(shí)間來代替R,這樣更能體現(xiàn)用戶與金融企業(yè)建立聯(lián)系時(shí)間的長短。

    還有一個(gè)問題是:如果每個(gè)RFM單元都被視為一個(gè)細(xì)分,那么營銷人員將無法單獨(dú)分析所有這125個(gè)客戶細(xì)分市場(chǎng)。因此,通常采用的RFM模型是將這三個(gè)維度指標(biāo)劃分到三維正方體中。

    在以上的RFM評(píng)分示例中,我們已經(jīng)分別計(jì)算R、F、M評(píng)分;現(xiàn)在我們進(jìn)一步分別獲得R、F、M的平均值;然后將各個(gè)變量高于平均分的定義為“高”,低于平均分的定義為“低”;根據(jù)三個(gè)變量“高”“低”的組合來定義客戶類型;如“高”“高”“高”為高價(jià)值客戶。

    通常,我們通過三維正方體來可視化RFM分析結(jié)果。這使用戶可以更輕松地理解得分,以提供更易于管理和直觀的細(xì)分。

    如上面的RFM模型所示,因?yàn)橛腥齻€(gè)變量,所以要使用三維坐標(biāo)系進(jìn)行展示,X軸表示Recency,Y 軸表示Frequency,Z軸表示Monetary,坐標(biāo)系的8個(gè)象限分別表示8類用戶。

    現(xiàn)在,讓我們討論如何解釋RFM細(xì)分,以了解這些用戶的行為,并提出一些有效的營銷策略。

    •  重要價(jià)值客戶 是您的最佳客戶,他們是那些最新購買,最常購買,并且花費(fèi)最多的消費(fèi)者。提供VIP服務(wù)和個(gè)性化服務(wù),獎(jiǎng)勵(lì)這些客戶,他們可以成為新產(chǎn)品的早期采用者,并有助于提升您的品牌。

    •  重要發(fā)展客戶 是您的近期客戶,消費(fèi)金額高,但平均頻率不太高,忠誠度不高。提供會(huì)員或忠誠度計(jì)劃或推薦相關(guān)產(chǎn)品以實(shí)現(xiàn)向上銷售并幫助他們成為您的忠實(shí)擁護(hù)者和高價(jià)值客戶。

    •  重要保持客戶 是指那些經(jīng)常購買、花費(fèi)巨大,但最近沒有購買的客戶。向他們發(fā)送個(gè)性化的重新激活活動(dòng)以重新連接,并提供續(xù)訂和有用的產(chǎn)品以鼓勵(lì)再次購買。

    •  重要挽回客戶 是那些曾經(jīng)光顧,消費(fèi)金額大,購買頻率低,但最近沒有光顧的顧客。設(shè)計(jì)召回策略,通過相關(guān)的促銷活動(dòng)或續(xù)訂帶回他們,并進(jìn)行調(diào)查以找出問題所在,避免將其輸給競(jìng)爭(zhēng)對(duì)手。

    • 一般價(jià)值客戶 是那些最近購買,消費(fèi)頻次高但消費(fèi)金額低的客戶,需要努力提高其客單價(jià),提供產(chǎn)品優(yōu)惠以吸引他們。

    •  一般發(fā)展客戶 是那些最近購買,但消費(fèi)金額和頻次都不高的客戶??商峁┟赓M(fèi)試用以提高客戶興趣,提高其對(duì)品牌的滿意度。

    •  一般保持客戶 是指很久未購買,消費(fèi)頻次雖高但金額不高的客戶??梢蕴峁┓e分制,各種優(yōu)惠和打折服務(wù),改變宣傳方向和策略與他們重新聯(lián)系,而采用公平對(duì)待方式是最佳。

    •  一般挽留客戶 是指RFM值都很低的客戶。針對(duì)這類客戶可以對(duì)其減少營銷和服務(wù)預(yù)算或直接放棄。

    此外:

    • 目前的RFM分析中,一般給與M值更高的權(quán)重;

    • 如果您的公司中一般挽留客戶與一般發(fā)展客戶占據(jù)多數(shù),說明公司的用戶結(jié)構(gòu)不是很合理,需要盡快采取措施進(jìn)行優(yōu)化。

    RFM是一種數(shù)據(jù)驅(qū)動(dòng)的客戶細(xì)分技術(shù),可幫助營銷人員做出更明智的戰(zhàn)略性決策。使?fàn)I銷人員能夠快速識(shí)別用戶并將其細(xì)分為同類群體,并針對(duì)他們制定差異化和個(gè)性化的營銷策略。這反過來又提高了用戶的參與度和留存率。

    通常,數(shù)據(jù)分析師會(huì)借助CRM系統(tǒng)或者BI工具來實(shí)現(xiàn)RFM分析。

    如需了解更多,歡迎訪問怡海軟件官網(wǎng) https://www.frensworkz.com/

    二、RFM模型如何實(shí)際應(yīng)用?

    這是一個(gè)人人都可以上手的模型,不管你是運(yùn)營、銷售、財(cái)務(wù)、市場(chǎng)等等,RFM模型是一個(gè)很通用,又有一套科學(xué)理論的商業(yè)模型。這是一篇我花了五小時(shí)的教程(真的是寫到崩潰,幸好我熬下來了,給大家分享實(shí)實(shí)在在可上手的干貨)數(shù)據(jù)源準(zhǔn)備只需四個(gè)字段:客戶名稱、交易日期、交易次數(shù)/頻率、交易金額。如果你手頭剛好有這樣的數(shù)據(jù)源不妨試試做這個(gè)模型吧。下面三頁是介紹什么是RFM,后面是全部的實(shí)操教程,Tableau和Excel通用操作,我保證你看了能立馬上手。如何通過訂單數(shù)據(jù),分析用戶的基本屬性用戶的訂單上都有訂餐地址,通過對(duì)于訂餐地址的統(tǒng)計(jì),我們可以查詢到不同條件組合下的用戶分布,甚至能知道喜歡謀道菜的用戶都在哪里。舉個(gè)簡(jiǎn)單的例子,下圖表示的是普通可樂和健怡可樂的用戶分布,類似的用戶數(shù)據(jù)挖掘,還可以根據(jù)復(fù)購構(gòu)成、復(fù)購用戶跨平臺(tái)使用情況、性別組成做更精細(xì)化的分析。值得注意的是,數(shù)據(jù)平臺(tái)間的差異還是蠻大的,除了跨平臺(tái)分析也需要分平臺(tái)對(duì)比,有利于針對(duì)不同平臺(tái)做出不同的營銷策略。上面這些最基本的用戶屬性對(duì)于精細(xì)化運(yùn)營還是不夠的。因?yàn)檫@些信息無法幫助你解決下面四個(gè)問題——

    1.誰是我的重要價(jià)值客戶,他們都有什么特點(diǎn)。

    2.誰是我需要重點(diǎn)保持聯(lián)系的客戶,他們都有什么特點(diǎn)。

    3.誰是我的重要發(fā)展客戶,他們都有什么特點(diǎn)。

    4.誰是我的重要挽留客戶,他們都有什么特點(diǎn)。想要解答這個(gè)問題,我們需要?jiǎng)佑酶唠A的分析模型,去挖掘有效信息。如何通過RFM模型,為用戶分群,實(shí)現(xiàn)精細(xì)化運(yùn)營RFM模型是一個(gè)被廣泛使用的客戶關(guān)系分析模型,主要以用戶行為來區(qū)分客戶,RFM分別是:R = Recency最近一次消費(fèi)F = Frequency 消費(fèi)頻率M = Monetary 消費(fèi)金額需要詳細(xì)了解以上三個(gè)指標(biāo)定義的,可以去戳度娘,教科書式的RFM區(qū)分,會(huì)將維度再細(xì)分出5份,這樣就能夠細(xì)分出5x5x5=125類用戶,再根據(jù)每類用戶精準(zhǔn)營銷。

    rfm模型分別代表

    三、如何分析RFM模型才能最有效,才能真正起到精細(xì)化運(yùn)營的作用?

    舉一個(gè)互聯(lián)網(wǎng)餐飲的例子~來證明如何分析RFM模型:

    如何通過外賣訂單數(shù)據(jù),分析用戶的基本屬性;

    用戶的訂單上都有訂餐地址,通過對(duì)于訂餐地址的統(tǒng)計(jì),我們可以查詢到不同條件組合下的用戶分布,甚至能知道喜歡某道菜的用戶都在哪里。類似的用戶數(shù)據(jù)挖掘,還可以根據(jù)復(fù)購構(gòu)成、復(fù)購用戶跨平臺(tái)使用情況、性別組成做更精細(xì)化的分析。值得注意的是,數(shù)據(jù)平臺(tái)間的差異還是蠻大的,有利于針對(duì)不同平臺(tái)做出不同的營銷策略。

    上面這些最基本的用戶屬性對(duì)于精細(xì)化運(yùn)營還是不夠的。 因?yàn)檫@些信息無法幫助你解決下面四個(gè)問題——

    1.誰是我的重要價(jià)值客戶,他們都有什么特點(diǎn)?

    2.誰是我需要重點(diǎn)保持聯(lián)系的客戶,他們都有什么特點(diǎn)?

    3.誰是我的重要發(fā)展客戶,他們都有什么特點(diǎn)?

    4.誰是我的重要挽留客戶,他們都有什么特點(diǎn)?

    2.如何通過RFM模型,為用戶分群,實(shí)現(xiàn)精細(xì)化運(yùn)營

     RFM模型是一個(gè)被廣泛使用的客戶關(guān)系分析模型,主要以用戶行為來區(qū)分客戶,RFM分別是:

    R = Recency 最近一次消費(fèi)

    F = Frequency 消費(fèi)頻率

    M = Monetary 消費(fèi)金額

    需要詳細(xì)了解以上三個(gè)指標(biāo)定義的,百度會(huì)將維度再細(xì)分出5份,這樣就能夠細(xì)分出5x5x5=125類用戶,再根據(jù)每類用戶精準(zhǔn)營銷……顯然125類用戶已超出普通人腦的計(jì)算范疇了,更別說針對(duì)125類用戶量體定制營銷策略。實(shí)際運(yùn)用上,我們只需要把每個(gè)唯獨(dú)做一次兩分即可,這樣在3個(gè)維度上我們依然得到了8組用戶。

    重要價(jià)值客戶(111):最近消費(fèi)時(shí)間近、消費(fèi)頻次和消費(fèi)金額都很高,必須是VIP??!

    重要保持客戶(011):最近消費(fèi)時(shí)間較遠(yuǎn),但消費(fèi)頻次和金額都很高,說明這是個(gè)一段時(shí)間沒來的忠實(shí)客戶,我們需要主動(dòng)和他保持聯(lián)系。

    重要發(fā)展客戶(101):最近消費(fèi)時(shí)間較近、消費(fèi)金額高,但頻次不高,忠誠度不高,很有潛力的用戶,必須重點(diǎn)發(fā)展。

    重要挽留客戶(001):最近消費(fèi)時(shí)間較遠(yuǎn)、消費(fèi)頻次不高,但消費(fèi)金額高的用戶,可能是將要流失或者已經(jīng)要流失的用戶,應(yīng)當(dāng)基于挽留措施。

    rfm模型分別代表

    3.如何在BDP個(gè)人版上建立RFM模型,幫助用戶分群

    這時(shí)候可能會(huì)有朋友問了,天啦,你這個(gè)三維模型,我沒辦法用BDP來建表格了。所以我們需要做的是將三維模型二維化,我們將R域切一塊出來(即在近30天有復(fù)購的用戶中做分析),壓扁了就會(huì)看到。

    上方的表示或許還是太學(xué)術(shù)了,簡(jiǎn)單的說

    第一步:先挑出來近1個(gè)月的復(fù)購用戶。

    第二步:近1個(gè)月內(nèi)復(fù)購用戶的平均實(shí)付金額做縱軸。

    第三步:近1個(gè)月內(nèi)復(fù)購用戶的購買次做橫軸,生成表格。

    第四步,你需要自己在這個(gè)表格上劃紅線。

    rfm模型分別代表

    橫著的紅線,代表著你認(rèn)為來吃飯的客人平均每餐該花多少錢,我這里設(shè)定的值是25元,叫外賣25都沒付到,對(duì)我而言是低消費(fèi)金額(低M)用戶。

    豎著的紅線,代表著你認(rèn)為復(fù)購多少次的客人,是你的高頻用戶。外賣點(diǎn)餐流動(dòng)率很大,一個(gè)用戶每個(gè)月能在一家店點(diǎn)三次以上的菜,對(duì)我而言即是高頻。

    這樣,BDP個(gè)人版上的RFM模型就建立好了。這個(gè)RFM模型在實(shí)操時(shí)有什么用呢?舉個(gè)例子

    比如對(duì)圈用戶群發(fā)短信轉(zhuǎn)化只有不到1%時(shí),你可以用RFM做個(gè)分析,只選取R值高的用戶(最近2周到最近一個(gè)月內(nèi)消費(fèi)的用戶),轉(zhuǎn)化率可以由1%提升到10%。

    這也意味著,以往6元/訂單將下降到0.6元/訂單。掌柜們是愿意花600元給10000個(gè)用戶發(fā)短信,得到100個(gè)訂單,還是愿意花48元給800人發(fā)短信得到80個(gè)訂單,相信大家一定會(huì)選后者。

    而整體的RFM區(qū)分,則能夠幫掌柜們針對(duì)不同的用戶發(fā)不同的短信,短信的開頭是用“好久不見”、還是用“恭喜你成為VIP”,就得看時(shí)重要保持客戶還是重要價(jià)值用戶了。只有能區(qū)分用戶,才能走向精細(xì)化運(yùn)營。

    四、rfm模型在客戶細(xì)分中有什么作用

    RFM模型。

    即:

    最近一次消費(fèi)(Recency)

    消費(fèi)頻率(Frequency)

    消費(fèi)金額(Monetary)

    在眾多的客戶關(guān)系管理(CRM)的分析模式中,RFM模型是衡量客戶價(jià)值和客戶創(chuàng)利能力的重要工具和手段。該機(jī)械模型通過一個(gè)客戶的近期購買行為、購買的總體頻率以及花了多少錢三項(xiàng)指標(biāo)來描述該客戶的價(jià)值狀況。

    以上就是關(guān)于rfm模型分別代表相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會(huì)為您講解更多精彩的知識(shí)和內(nèi)容。


    推薦閱讀:

    aso和rf偏高(rf和aso都高)

    商家可以訂閱rfq關(guān)鍵詞嗎

    papereasy免費(fèi)查重入口(paperfree免費(fèi)查重入口官網(wǎng))

    高端就業(yè)安置有成功的嗎(高端就業(yè)安置可靠嗎)

    全球最好的景觀設(shè)計(jì)專業(yè)