HOME 首頁
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運(yùn)營
CASE 服務(wù)案例
NEWS 熱點(diǎn)資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    數(shù)學(xué)大概念教學(xué)是什么意思(數(shù)學(xué)大概念教學(xué)是什么意思?。?/h1>
    發(fā)布時間:2023-03-13 01:33:56     稿源: 創(chuàng)意嶺    閱讀: 67        問大家

    大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于數(shù)學(xué)大概念教學(xué)是什么意思的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。

    ChatGPT國內(nèi)免費(fèi)在線使用,一鍵生成原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報告、論文、代碼、作文、做題和對話答疑等等

    只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁版、PC客戶端

    官網(wǎng):https://ai.de1919.com

    本文目錄:

    數(shù)學(xué)大概念教學(xué)是什么意思(數(shù)學(xué)大概念教學(xué)是什么意思?。?  src=

    一、簡答題:如何進(jìn)行數(shù)學(xué)概念的教學(xué)

    教學(xué)蹦來就是一個繁雜的過程,哪里能答得簡啊,如果要簡單的話就四字:認(rèn)真負(fù)責(zé)。我不教數(shù)學(xué),但找了篇相關(guān)的文章;參參考給你。嘿嘿~~很長的;參考里的網(wǎng)站有很多教學(xué)論文去看看吧。

    所謂數(shù)學(xué)概念,就是事物在數(shù)量關(guān)系和空間形式方面的本質(zhì)屬性,是人們通過實(shí)踐,從數(shù)學(xué)所研究的對象的許多屬性中,抽出其本質(zhì)屬性概括而形成的。就是指那些數(shù)學(xué)名詞和術(shù)語。(在小學(xué)數(shù)學(xué)中反映數(shù)和形本質(zhì)屬性的數(shù)字、圖形、符號、名詞術(shù)語和定義、法則等都是數(shù)學(xué)概念。)

    數(shù)學(xué)概念是進(jìn)行數(shù)學(xué)推理、判斷的依據(jù),是建立數(shù)學(xué)定理、法則、公式的基礎(chǔ),也是形成數(shù)學(xué)思想方法的出發(fā)點(diǎn)。因此學(xué)好數(shù)學(xué)的基礎(chǔ)關(guān)鍵是數(shù)學(xué)概念的學(xué)習(xí),數(shù)學(xué)概念教學(xué)是數(shù)學(xué)教學(xué)是一個重要的組成部分。

    一、數(shù)學(xué)概念的意義和定義方式

    數(shù)學(xué)概念形成是從大量的實(shí)際例子出發(fā),經(jīng)過比較、分類從中找出一類事物的本質(zhì)屬性,然后再通過具體的例子對所發(fā)現(xiàn)的屬性進(jìn)行檢驗(yàn)與修正,最后通過概括得到定義并用符號表達(dá)出來。實(shí)際上應(yīng)包含兩層含義:其一,數(shù)學(xué)概念代表的是一類對象,而不是個別的事物。例如"三角形"可用符號"△"來表示。這時凡是像"△"這樣具有三個角和三條邊的圖形,則不論大小,統(tǒng)稱為三角形,也就是說三角形的概念,就是指所有的三角形:等邊的、等腰的、不等邊的、直角的、銳角的、鈍角......;其二,數(shù)學(xué)概念反映的是一類對象的本質(zhì)屬性,即該類對象的內(nèi)在的、固有的屬性,而不是那些表面的非本質(zhì)的屬性。例如,"圓"這個概念,它反映的是"平面內(nèi)到一個定點(diǎn)的距離等于定長的點(diǎn)的集",我們根據(jù)這些屬性,就能把"圓"和其他概念區(qū)分開。

    我們把某一概念反映的所有對象的共同本質(zhì)屬性的總和叫做這個概念的內(nèi)涵,把適合于這個概念的所有對象的范圍稱為這個概念的外延。通常說,給概念下定義,就是提示內(nèi)涵或外延。一般說,定義數(shù)學(xué)概念有以下幾種方式:

    1.約定式定義

    由于數(shù)學(xué)自身發(fā)展的需要,有時也通過規(guī)定給術(shù)語以特定的意義。如"不等于零的數(shù)的零次冪等于1",規(guī)定了零指數(shù)冪的意義,但要注意,約定式不能隨心所欲,必須符合客觀規(guī)律。

    2.描述性定義

    數(shù)學(xué)是一門嚴(yán)謹(jǐn)?shù)目茖W(xué),每個新概念總要用一些已知的概念來定義,而這些用于定義的已知概念又必須用另一些已知的概念來刻畫,從而構(gòu)成了一個概念的系列。在概念的系列中,是不允許有循環(huán)的。因此總有些概念是不能用別的概念來定義。這樣的概念,叫做數(shù)學(xué)中的基本概念,又稱為"原名"(或不定義概念、原始概念),它們的意義只能借助于其他術(shù)語和它們各自的特征予以形象地描述。如:幾何中的點(diǎn)、直線、平面,代數(shù)中的集合、元素等。

    3.構(gòu)造式定義

    這種定義是通過概念本身發(fā)生、形成過程的描述來給出的。如橢圓的定義"平面內(nèi)與兩個定點(diǎn)的距離的和等于定長的點(diǎn)的規(guī)跡叫做橢圓"。

    4.屬加種差定義

    如果某一概念從屬于另一個概念,則后者叫做前者的屬概念,而前者叫做后者的種概念。如實(shí)數(shù)是有理數(shù)的屬概念,而有理數(shù)是實(shí)數(shù)的種概念。

    在同一個屬概念下,各個概念所含屬性的差別叫種差。如對于四邊形這個屬概念,平行四邊形和梯形都是它的種概念,它們的種差是:"兩組對邊分別平行"和"一組對邊平行,另一組對邊不平行"。

    用屬加種差來定義概念,"就是把某一概念放在另一更廣泛的概念里"來刻畫它的意義,通常的方法是用鄰近的屬加種差來進(jìn)行表述。如:平行四邊形的定義,它的鄰近的屬概念是四邊形,種差是兩組對邊分別平行,因而平行四邊形的定義表述成"兩組對邊分別平行的四邊形叫做平行四邊形"。

    另外,在教材里,還會遇到一些通過揭示概念的外延的方式給概念下定。如實(shí)數(shù)的定義:"有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)"。

    最后,還需聲明:定義是數(shù)學(xué)概念的方式,以上分析是相對的、不嚴(yán)格的。例如,"異面直線所成角"定義,我們既可以認(rèn)為它是約定式的,即規(guī)定"把經(jīng)過空間任意一點(diǎn)所作的兩條異面直線的平行線所成的銳角或直角叫做異面直線所成的角",也可以把它理解為發(fā)生式的:即通過取點(diǎn)、作平行線構(gòu)成兩對對頂角,把其中的銳角或直角叫做異面直線所成的角??傊覀兝斫舛x并不在于區(qū)分它是屬于哪種定義方式,而是要明確概念的外延與內(nèi)涵,然后應(yīng)用它們?nèi)ソ鉀Q問題。

    二、怎樣進(jìn)行數(shù)學(xué)概念教學(xué)

    對數(shù)學(xué)概念,即使是那些原始概念,都不能望文生義。在教學(xué)中,既要把握它的內(nèi)涵,這是掌握概念的基礎(chǔ);又要了解它的外延,這樣才有利于對概念的理解和擴(kuò)展;同時,對于概念中的各項(xiàng)規(guī)定、各種條件,都有要逐一認(rèn)識,綜合理解,從而印象更深,掌握更牢。

    一般來說,圍繞一個數(shù)學(xué)概念,應(yīng)當(dāng)力求清楚下列各個方面的問題:

    ①揭示本質(zhì)屬性。這個概念討論的對象是什么,有何背景?此概念中有哪些規(guī)定和條件?它們與過去學(xué)過的知識有什么聯(lián)系?這些規(guī)定和條件的確切含義又是什么?

    給出概念的定義、名稱和符號,揭示概念的本質(zhì)屬性。例如學(xué)習(xí)二次函數(shù)的概念,先學(xué)習(xí)它的定義:"y=ax2+bx+c(a、b、c、是常數(shù)。a≠0)那么y叫做x的二次函數(shù)"。又如,一位教師教學(xué)"長方體和正方體的認(rèn)識"時,在指導(dǎo)學(xué)生給不同形體的實(shí)物分類引入"長方體"和"正方體"的概念后,及時引導(dǎo)學(xué)生先把"長方體"或"正方體"的各個面描在紙上,并仔細(xì)觀察描出的各個面有什么特點(diǎn),再認(rèn)識什么叫"棱",什么叫"頂點(diǎn)",然后,指導(dǎo)學(xué)生分組填好領(lǐng)料單,根據(jù)領(lǐng)料單領(lǐng)取"頂點(diǎn)"和"棱",制作"長方體"或"正方體"的模型,邊觀察邊討論長方體與正方體的頂點(diǎn)和棱有什么特點(diǎn),最后指導(dǎo)學(xué)生自己歸納、概括出"長方體"和"正方體"的特征,從而使學(xué)生充分了解"長方體"和"正方體"這兩個概念的內(nèi)涵和外延。

    ②討論反例與特例。對概念進(jìn)行特殊的分類,討論各種特例,突出概念的本質(zhì)屬性。例如二次函數(shù)的特例是:y=ax2,y=ax2+c,y=ax2+bx,等等。

    ③新舊知識聯(lián)系。此概念中有哪些規(guī)定和條件?它們與過去學(xué)過的知識有什么聯(lián)系?使新概念與原有認(rèn)知結(jié)構(gòu)中有關(guān)觀念建立聯(lián)系,把新概念納入到相應(yīng)的概念體系中,同化新概念。例如把二次函數(shù)和一次函數(shù)、函數(shù)等聯(lián)系起來,把它納入函數(shù)概念的體系中。

    ④實(shí)例確認(rèn)。辨認(rèn)正例和反例,確認(rèn)新概念的本質(zhì)屬性,使新概念與原有認(rèn)知結(jié)構(gòu)中有關(guān)概念精確分化。例如舉出y=2x+3,y=3x2-x+5,y=-5x2-6等讓學(xué)生辨認(rèn)。

    ⑤具體運(yùn)用。根據(jù)概念中的條件和規(guī)定,能夠歸納出哪些基本性質(zhì)?這些性質(zhì)在應(yīng)用中有什么作用?通過各種形式運(yùn)用概念,加深對新概念的理解,使有關(guān)概念融會貫通成整體結(jié)構(gòu)。

    以上,我們只是介紹了概念教學(xué)過程的一般模式。把這個全過程可歸結(jié)為三個階段:

    (一)引進(jìn)概念途徑

    數(shù)學(xué)概念本身是抽象的,所以,新概念的引入,一定要堅(jiān)持從學(xué)生的認(rèn)識水平出發(fā),要密切聯(lián)系生產(chǎn)、生活實(shí)際。不同的概念的引進(jìn)方法也不盡相同。對于一些原始概念和一些比較抽象的概念,教師應(yīng)通過一定數(shù)量的感性材料來引入,要密切聯(lián)系生活實(shí)際,使學(xué)生"看得見,摸得著"。引用實(shí)例時一定要抓住概念的本特征,要著力于揭示概念的真實(shí)含義。如"平面"的概念,可讓學(xué)生觀察生活中一些如桌面、平靜的水面等,通過自己的探索和與同學(xué)們的交流得出結(jié)論。但是,教師一定要想辦法讓學(xué)生自己得到"無限延伸性和沒有厚度"的本質(zhì)特征。

    (二)形成概念的方法

    認(rèn)識一個特殊的心理過程,由于每個學(xué)生之間存在一些差異,那么完成這個過程所需的時間也不一定相同。但是就認(rèn)識過程而言,卻不能跳躍。教學(xué)中,引入概念、并使學(xué)生初步把握了概念的定義以后,還不等于形成了概念,還必須有一個去粗取精、去偽存真、由此及彼、由表及里的改造、制造,必須在感性認(rèn)識的基礎(chǔ)上對概念作辯證的分析,用不同的方式進(jìn)一步提示不同概念的本質(zhì)屬性。

    1.在掌握了概念的本質(zhì)屬性之后,要引導(dǎo)學(xué)生作一些練習(xí)。例如,引入分解因式的概念后,可選下列一類練習(xí)讓學(xué)生回答。

    下列由左到右的變形,哪些是屬于分解因式?哪些不是?為什么?

    ①(x+2)(x-2)=x2-4;

    ②(a2-9)=(a+3)(a-3);

    ③a3-9a=a(a2-9);

    ④x2-y2+1=(x+y)(x-y)+1;

    ⑤x2y+x=x2(y+1)

    通過回答問題,特別是說明理由,可以初步培養(yǎng)學(xué)生運(yùn)用概念作簡單判斷的能力。同時,每做一次判斷,概念的本質(zhì)屬性就會在大腦里重現(xiàn)一次。因而,對于促進(jìn)概念的形成是行之有效的。

    2.通過變式或圖形,深化對概念的理解。又如學(xué)習(xí)梯形這個概念時,可提供如下圖形讓學(xué)生觀察:

    這里,要注意三點(diǎn):第一,所提供的感性材料(梯形)要足量,不可太少,也沒有必要太多。太少不利于學(xué)生從中悟出規(guī)律,形成表象;太多會造成時間和精力上的浪費(fèi)。第二,要引導(dǎo)學(xué)生對每一個材料加以分析和綜合。第

    三,要注意變式,全部材料要能反映出本要領(lǐng)的全部本質(zhì)屬性。

    3.抓住概念之間的內(nèi)在聯(lián)系,通過新舊概念的對比,形成正確的概念。又如教學(xué)約數(shù)和倍數(shù)的概念時,可從"整除"這一概念入手,引出概念。

    (三)概念的發(fā)展

    學(xué)生掌握某一概念后,并不等于概念教學(xué)的結(jié)束,要用發(fā)展的眼光教概念。

    1.不失時機(jī)地?cái)U(kuò)展延伸概念的含義。一個概念總是嵌在一些概念的群體之中。它們之間有縱橫交錯的內(nèi)在聯(lián)系,必須揭示清楚。如學(xué)習(xí)比的意義之后,就要及時地把"比"、"分?jǐn)?shù)"、"除法"三者聯(lián)系在一起,找出三者的聯(lián)系和區(qū)別后,使學(xué)生居高臨下,在一個廣闊的背景下審視"比"這個概念,加深對概念的理解。

    2.在一定的階段形成一定的認(rèn)識。抽象概念不要超越教材要求,否則會超越學(xué)生的承受能力。如一年級學(xué)習(xí)加法,只讓學(xué)生認(rèn)識到,加法表示"合并在一起","把兩個數(shù)合并在一起"要用加法即可,而不能告訴學(xué)生確切的定義:"把兩個數(shù)合并成一個數(shù)的運(yùn)算,叫做加法"。

    總之,提高中小學(xué)數(shù)學(xué)概念教學(xué)的水平,在概念教學(xué)實(shí)踐中,教師要有意識地訓(xùn)練學(xué)生的數(shù)學(xué)思維方式、品質(zhì)、能力和方法。加深學(xué)生對于數(shù)學(xué)概念的理解,是使學(xué)生融會貫通地掌握數(shù)學(xué)知識、增強(qiáng)能力的前提和關(guān)鍵,是把知識學(xué)好學(xué)活的必由之路。

    二、小學(xué)數(shù)學(xué)概念教學(xué)策略

    概念教學(xué)是小學(xué)數(shù)學(xué)教學(xué)中最基礎(chǔ)也是最重要的內(nèi)容,概念教學(xué)能提高學(xué)生的推理分析、概括與歸納等思維能力。下面我來為大家介紹一下有關(guān)小學(xué)數(shù)學(xué)課堂概念教學(xué)的策略

    小學(xué)數(shù)學(xué)概念課堂

    一、小學(xué)數(shù)學(xué)概念教學(xué)存在的問題

    新課改以來,概念課的教學(xué)取得了長足的進(jìn)步,老師們大多能通過對大量事物、生活現(xiàn)象的感知、分析,操作、實(shí)驗(yàn),進(jìn)而歸納并抽象出概念。但毋庸置疑,數(shù)學(xué)概念教學(xué)還是比較忽視概念的形成過程,忽視概念間的相互聯(lián)系,忽視概念的靈活應(yīng)用,具體存在以下問題:

    首先,教師心中沒有一個宏觀的“概念”,即不能將整個小學(xué)數(shù)學(xué)概念體系串聯(lián)起來。往往習(xí)慣于把各個概念分開講述,孤立地進(jìn)行概念教學(xué)。盡管這也是課時設(shè)置的需要,教學(xué)進(jìn)度的需要,但如果不能引導(dǎo)學(xué)生將概念串聯(lián)起來,學(xué)生掌握的各種數(shù)學(xué)概念就顯得零零碎碎,這不僅給概念的記憶增加了難度,更加重了學(xué)生理解和應(yīng)用概念的困難。

    第二,概念教學(xué)脫離現(xiàn)實(shí)情境。學(xué)生往往把概念強(qiáng)記下來,然后通過大量的強(qiáng)化練習(xí)來鞏固概念。這種死記硬背的學(xué)習(xí)方式有著很大的消極影響,由于學(xué)生并沒有理解概念的真正涵義,一旦遇到實(shí)際應(yīng)用時就感到一片茫然。

    第三,數(shù)學(xué)概念的形成沒有建立在學(xué)生已有的認(rèn)知基礎(chǔ)上。數(shù)學(xué)概念的形成,是一個不斷建構(gòu)與加深的過程。引導(dǎo)學(xué)生準(zhǔn)確地理解概念,明確概念的內(nèi)涵與外延,正確表述概念,這是概念教學(xué)應(yīng)該達(dá)到的目標(biāo)。而部分教師課堂教學(xué)中對概念的抽象、歸納過于倉促,學(xué)生尚未建立初步的感知,教師即已迫不及待地做出歸納總結(jié)。

    二、小學(xué)數(shù)學(xué)概念課的基本環(huán)節(jié)

    概念課的教學(xué)基本環(huán)節(jié)大致分為:概念的初步感知——概念的理解——概念的類比——概念系統(tǒng)的建構(gòu)。

    (一)概念的初步感知

    數(shù)學(xué)概念是抽象的、嚴(yán)謹(jǐn)?shù)?、系統(tǒng)的,而小學(xué)生的心理特點(diǎn)則是容易理解和接受具體的、直觀的感性知識。因此,我們在教學(xué)之始應(yīng)該在數(shù)學(xué)與生活之間搭建起聯(lián)系的橋梁,提供豐富、典型、有趣的材料,充實(shí)學(xué)生的感性認(rèn)識。概念引入的途徑是多樣的,可以通過直觀引入、計(jì)算引入,也可以從情境設(shè)疑引入、學(xué)生的生活實(shí)際引入、知識基礎(chǔ)引入、新舊聯(lián)系引入。

    (二)概念的理解

    小學(xué)生建立數(shù)學(xué)概念有兩種基本形式:一是概念的形成,二是概念的同化。由于小學(xué)生的思維特點(diǎn)處于由形象思維逐步向抽象邏輯思維過渡的階段,因此,小學(xué)生學(xué)習(xí)數(shù)學(xué)概念大多以“概念形成”的形式為主。概念的形成是一個累積、漸進(jìn)的過程,是概念教學(xué)的中心環(huán)節(jié)。數(shù)學(xué)概念的形成一般要經(jīng)過直觀感知→建立表象→揭示本質(zhì)屬性三個階段,直觀感知和建立表象是建立概念的向?qū)?,概念本質(zhì)屬性的揭示是概念教學(xué)的關(guān)鍵。

    (三)概念的類比

    小學(xué)生對概念的掌握往往不是一次能完成的,要由具體到抽象,再由抽象到一般多次循環(huán)往復(fù)。當(dāng)學(xué)生初步建立概念后還需運(yùn)用多種方法,促進(jìn)概念在學(xué)生認(rèn)知結(jié)構(gòu)中的保持,并通過不斷運(yùn)用,加深對概念的理解和記憶,使新建立的概念得以鞏固。為了讓學(xué)生鞏固所學(xué)的概念,可以舉出實(shí)例進(jìn)行類比、辨析。

    (四)概念系統(tǒng)的建構(gòu)

    概念總是一個一個進(jìn)行教學(xué)的,因此在小學(xué)生的頭腦中,概念常常是孤立的、互不聯(lián)系的,教學(xué)進(jìn)行到一定程度時,要引導(dǎo)學(xué)生把學(xué)過的概念放在一起,尋找概念之間縱向或橫向的聯(lián)系,組成概念系統(tǒng),使教材中的數(shù)學(xué)知識轉(zhuǎn)化成為學(xué)生頭腦中的認(rèn)識結(jié)構(gòu),以利于對知識的檢索、提取和應(yīng)用,促進(jìn)知識的遷移,發(fā)展學(xué)生的數(shù)學(xué)能力。

    三、小學(xué)數(shù)學(xué)概念課教學(xué)的策略初探

    (一)在具象與抽象的碰撞中建構(gòu)概念

    在數(shù)學(xué)與生活之間搭建起聯(lián)系的橋梁,給學(xué)生提供豐富、典型而有趣的感知材料。將數(shù)學(xué)概念教學(xué)置于現(xiàn)實(shí)背景中,讓學(xué)生通過活動經(jīng)歷、體驗(yàn)數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系,用探究學(xué)習(xí)等方法引領(lǐng)學(xué)生獲得數(shù)學(xué)概念,這樣建立起來的概念才具有豐富的內(nèi)涵。采用的方式有:1.讓學(xué)生結(jié)合動手操作與語言表達(dá),說出每一個概念的意義;2.讓學(xué)生試著找概念的外在表現(xiàn)、不同形式(外延);3.數(shù)形結(jié)合,或是借助轉(zhuǎn)換等進(jìn)行相關(guān)的練習(xí)。

    (二) 在類比與變式中深化概念本質(zhì)

    概念教學(xué)一般應(yīng)遵循“從生活中來——抽象成數(shù)學(xué)模型——到生活中去”這樣一個過程,強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),初步學(xué)會應(yīng)用數(shù)學(xué)的思維方式去觀察、分析,親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用,在一個單元或是一組概念學(xué)完后,進(jìn)行綜合應(yīng)用。

    例如,在教學(xué)有關(guān)圓的周長和面積概念之后,讓學(xué)生先做一道基本題,分析學(xué)生出現(xiàn)的問題,一起解決。再讓學(xué)生在原題的基礎(chǔ)上變一變,做一點(diǎn)變式練習(xí)。這樣的變式練習(xí),給了學(xué)生一個轉(zhuǎn)換角度思考問題的空間,通過“外延”,加深理解概念的內(nèi)涵。

    (三)在思維導(dǎo)圖中構(gòu)建概念體系

    建構(gòu)主義教學(xué)觀認(rèn)為,概念的建構(gòu)需經(jīng)多次反復(fù),經(jīng)歷“建構(gòu)—解構(gòu)—重構(gòu)”的過程。在理解和練習(xí)的基礎(chǔ)上,我讓學(xué)生將相關(guān)的概念內(nèi)涵與外延制作成思維導(dǎo)圖,也就是將知識形成網(wǎng)絡(luò)圖,達(dá)到觸類旁通的目的。

    例如,有關(guān)圓的周長的概念,我讓學(xué)生動手畫一畫、圍一圍、量一量,再試著讓學(xué)生用自己的語言來說一說“圓的周長”。比如有學(xué)生借助一個圓形物體,邊摸邊說。同時,我鼓勵學(xué)生用不同的方法來表達(dá)自己的理解。也有學(xué)生說,任何一個圓的周長都是它的直徑的三倍多一些。還有學(xué)生說一個圓的半徑的二倍再乘圓周率就是它的周長了。有直接描述內(nèi)涵的,也有借助外延來刻畫的。課堂上的時間有限,于是,讓學(xué)生回家講給家人聽,或是錄制成小視頻,發(fā)到班級的微信群里,分享給同學(xué)們聽。相關(guān)練習(xí)后,再將前后的知識點(diǎn)形成一個網(wǎng)狀。引導(dǎo)學(xué)生畫出思維導(dǎo)圖。

    ( 四 )在梳理與歸納中構(gòu)建數(shù)學(xué)概念體系

    教師想要給學(xué)生一棵“知識樹”,自己得擁有“一片森林”。教師要明白每一個數(shù)學(xué)概念在整個數(shù)學(xué)概念體系中的位置與重要性,如此,在引導(dǎo)學(xué)生歸納與構(gòu)建數(shù)學(xué)知識體系時就能做到得心應(yīng)手。

    在給學(xué)生“一棵樹”之前,還得讓學(xué)生看到進(jìn)入森林的道路,不至于讓學(xué)生進(jìn)去后,只見樹木不見森林,或是被教師牽著走。為了給孩子們主動去探索這片森林的路,可以結(jié)合當(dāng)前的教學(xué)引導(dǎo)學(xué)生做一些相關(guān)的小研究,并讓學(xué)生用數(shù)學(xué)周記表達(dá)自己的作品。

    小學(xué)數(shù)學(xué)常用順口溜

    一、20以內(nèi)進(jìn)位加法

    看大數(shù),分小數(shù),湊整十,加零頭。

    (掌握“湊十法”,提倡“遞推法”。)

    二、20以內(nèi)退位減法

    20以內(nèi)退位減,口算方法和簡單。

    十位退一,個加補(bǔ),又準(zhǔn)又快寫得數(shù)。

    三、加法意義,豎式計(jì)算

    兩數(shù)合并用加法,加的結(jié)果叫做和。

    數(shù)位對其從右起,逢十進(jìn)一別忘記。

    四、減法的意義豎式計(jì)算

    從大去小用減法,減的結(jié)果叫做差。

    數(shù)位對齊從右起,不夠減時前位拿。

    五、兩位數(shù)乘法

    兩位數(shù)乘法并不難,計(jì)算過程有三點(diǎn):

    乘數(shù)個位要先算,再用十位乘一遍,

    乘積末位是關(guān)鍵,要和十位來對端;

    兩次乘積相加完,層層計(jì)算記心間

    六、兩位數(shù)除法

    除數(shù)兩位看兩位,兩位不夠除三位。

    除到那位商那位,余數(shù)要比除數(shù)小,

    然后再除下一位,試商方法要靈活,

    掌握“四舍五入”法,還有“同商比較法”,

    了解“折半定商法”,不足除數(shù)商九、八。(包括:同頭、高位少1)

    七、混合運(yùn)算

    拿到式題認(rèn)真看,先算乘除后加堿。

    遇到括號要先算,運(yùn)用規(guī)律要改變。

    一些數(shù)據(jù)要記牢,技能技巧掌握好。

    八、加、減法速算

    加減法速算你莫愁,拿到算式看清楚,

    接近整百湊整數(shù),如下處理無謬誤。

    加法不足減補(bǔ)數(shù),超余零頭加在后。

    減法不足加補(bǔ)數(shù),超余零頭減在后。

    九、多位數(shù)讀法

    讀書方法很容易,首先四位一分級。

    要從最高位讀起,幾千幾百幾十幾。

    級的單位讀億萬,末尾有零都不讀

    (級末尾0不讀,整個數(shù)末尾0不讀)

    中間夾零讀一個,漢字表達(dá)沒參和。

    注讀零的:

    1、萬級個級首位有零

    2、整個萬級是零

    3、上級末尾下級首位都有0

    4、每級中間有0

    十、小數(shù)加減法

    小數(shù)加減計(jì)算題,以點(diǎn)對準(zhǔn)好對齊。

    算法如同算整數(shù),算畢把點(diǎn)往下移。

    十一、小數(shù)乘法

    小數(shù)乘小數(shù),法則同整數(shù)。

    定積小數(shù)位,因數(shù)共同湊。

    十二、除數(shù)是小數(shù)的除法

    除數(shù)的小數(shù)點(diǎn)一劃,(去掉小數(shù)點(diǎn))

    被除數(shù)的小數(shù)點(diǎn)搬家,向右搬家搬幾位,

    除數(shù)的小數(shù)位數(shù)決定它。

    十三、質(zhì)數(shù)歌

    一位質(zhì)數(shù)2、3、5和7,

    兩位1、3、7、9前加1,

    4后3,7前有9,7后1,

    3、4、6后加7、1,

    2、5、7、8后添9、3,

    二十五個質(zhì)數(shù)要記全。

    十四、分?jǐn)?shù)乘除法

    分?jǐn)?shù)乘法易學(xué)懂,分子分母分別乘。算式意義要搞清,上下能約更輕松。分?jǐn)?shù)除法方法妙,原來除號變乘號。除數(shù)子母打顛倒,進(jìn)行計(jì)算離不了。

    十五、約分

    約分、約分,相乘約凈,省時省力。從上往下,從左到右,弄清數(shù)據(jù),一數(shù)不漏。遇到小數(shù),去點(diǎn)為整,位數(shù)不夠,用“零”來補(bǔ)。

    十六、互質(zhì)數(shù)的判斷

    分?jǐn)?shù)比化簡,互質(zhì)數(shù)兩端。觀察記五點(diǎn):1和所有數(shù);相鄰兩個數(shù);兩質(zhì)必互質(zhì)。大數(shù)是質(zhì)數(shù),兩數(shù)定互質(zhì)。小數(shù)是質(zhì)數(shù),大數(shù)不倍數(shù)。(是小數(shù)的)

    十七、文字題

    敘述形式有三種,讀法意義和名稱。解題方法要記清,縮句化簡一步算。標(biāo)點(diǎn)詞語把句斷,分層布列莫遲延。列式方法有兩種,可用算式和方程。

    十八、比較關(guān)系應(yīng)用題

    (一)相差關(guān)系

    1、多多少,少多少,都是大減小。

    2、已知條件說比多,比前用加比后減。

    3、已知條件說比少,比前用減比后加。

    (二)倍數(shù)關(guān)系

    1、倍在問題里用除。

    2、倍在已知條件里,求是前用乘,求是后用除。

    (三)求比幾倍多(少)幾的數(shù)

    根據(jù)倍數(shù)分乘數(shù),根據(jù)多少分加減。

    算除先加減,算乘后加減。

    十九、找單位“1”

    單位“1“藏得巧,根據(jù)分率把你找。

    “其中“的前站得好,”是、占、比“后坐得妙;

    “問答式“能找到,補(bǔ)充說明要搞好。

    百分?jǐn)?shù)常遇到,不帶“率“字有禮貌。

    找出一對好朋友,然后確定乘除號。

    找單位“1“的說明:

    抓住含有不帶單位名稱的分?jǐn)?shù)的“關(guān)鍵句“、“關(guān)鍵詞”,進(jìn)行剖析,這樣就解決了不少學(xué)生對于分?jǐn)?shù)應(yīng)用題苦于不知“從何下手”進(jìn)行分析數(shù)量關(guān)系。因此,使學(xué)生學(xué)會迅速找“關(guān)鍵句”、“關(guān)鍵詞語”進(jìn)行剖析數(shù)量關(guān)系,不僅能有利于掌握解答分?jǐn)?shù)應(yīng)用題的一般規(guī)律,而且也能培養(yǎng)學(xué)生的能力,發(fā)展學(xué)生的智力。先“找”后“析”是六年級學(xué)生普遍的學(xué)習(xí)規(guī)律,切記引導(dǎo)學(xué)生認(rèn)真有序地進(jìn)行分析。

    分?jǐn)?shù)應(yīng)用題1、找 2、明 3、定 4、對應(yīng)的解題思路。

    二十、正反比例應(yīng)用題

    正比例,分三段,不變數(shù)量在中間,

    前后歸一分開列,然后等號來連接。

    反比例分三段,不變數(shù)量在前面,

    “如果”分開歸總列,再用等號來連接。

    三、數(shù)學(xué)概念是什么

    問題一:什么是數(shù)學(xué),數(shù)學(xué)的概念 數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是刻畫自然規(guī)律和社會規(guī)律的科學(xué)語言和有效工具。數(shù)學(xué)科學(xué)是自然科學(xué)、技術(shù)科學(xué)等科學(xué)的基礎(chǔ),并在經(jīng)濟(jì)科學(xué)、社會科學(xué)、人文科學(xué)的發(fā)展中發(fā)揮越來越大的作用。數(shù)學(xué)的應(yīng)用越來越廣泛,正在不斷地滲透到社會生活的方方面面,它與計(jì)算機(jī)技術(shù)的結(jié)合在許多方面直接為社會創(chuàng)造價值,推動著社會生產(chǎn)力的發(fā)展。數(shù)學(xué)在形成人類理性思維和促進(jìn)個人智力發(fā)展的過程中發(fā)揮著獨(dú)特互、不可替代的作用。數(shù)學(xué)是人類文化的重要組成部分,數(shù)學(xué)素質(zhì)是公民所必須具備的一種基本素質(zhì)。

    -------選自

    問題二:數(shù)學(xué)概念的含義是什么,中學(xué)數(shù)學(xué)常見的數(shù)學(xué)概念的定義方式有哪些 數(shù)學(xué)是必考科目之一,故從初一開始就要認(rèn)真地學(xué)習(xí)數(shù)學(xué)。那么,怎樣才能學(xué)好數(shù)學(xué)呢?現(xiàn)介紹幾種方法以供參考: 一、課內(nèi)重視聽講,課后及時復(fù)習(xí)。 新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點(diǎn)、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。 二、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。 要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。 三、調(diào)整心態(tài),正確對待考試。 首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。 在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。 由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點(diǎn),使自己進(jìn)入數(shù)學(xué)的廣闊天地中去。 如何學(xué)好數(shù)學(xué)2 高中生要學(xué)好數(shù)學(xué),須解決好兩個問題:第一是認(rèn)識問題;第二是方法問題。 有的同學(xué)覺得學(xué)好教學(xué)是為了應(yīng)付升學(xué)考試,因?yàn)閿?shù)學(xué)分所占比重大;有的同學(xué)覺得學(xué)好數(shù)學(xué)是為將來進(jìn)一步學(xué)習(xí)相關(guān)專業(yè)打好基礎(chǔ),這些認(rèn)識都有道理,但不夠全面。實(shí)際上學(xué)習(xí)教學(xué)更重要的目的是接受數(shù)學(xué)思想、數(shù)學(xué)精神的熏陶,提高自身的思維品質(zhì)和科學(xué)素養(yǎng),果能如此,將終生受益。曾有一位領(lǐng)導(dǎo)告訴我,他的文科專業(yè)出身的秘書為他草擬的工作報告,因?yàn)槿A而不實(shí)又缺乏邏輯性,不能令他滿意,因此只得自己執(zhí)筆起草。可見,即使將來從事文秘工作,也得要有較強(qiáng)的科學(xué)思維能力,而學(xué)習(xí)數(shù)學(xué)就是最好的思維體操。有些高一的同學(xué)覺得自己剛剛初中畢業(yè),離下次畢業(yè)還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學(xué)、初中就是這樣“先松后緊”地混過來作為“成功”的經(jīng)驗(yàn)。殊不知,第一,現(xiàn)在高中數(shù)學(xué)的教學(xué)安排是用兩年的時間學(xué)完三年的課程,高三全年搞總復(fù)習(xí),教學(xué)進(jìn)度排得很緊;第二,高中數(shù)學(xué)最重要、也是最難的內(nèi)容(如函數(shù)、立幾)放在高一年級學(xué),這......>>

    問題三:數(shù)學(xué)概念理論對數(shù)學(xué)概念教學(xué)有什么意義 新概念是基于數(shù)學(xué)邏輯建構(gòu)形成時,常采用概念同化教學(xué)方式,即直接揭示概念的定義,借助已有知識進(jìn)行同化理解.用這種方式教概念,可有不同的引入途徑,需要強(qiáng)調(diào)的是應(yīng)讓學(xué)生理解引入新概念的必要性.這種方式其實(shí)是通過邏輯演繹進(jìn)行概念教學(xué).由于是從抽象定義出發(fā),所以應(yīng)注意及時用典型實(shí)例使概念獲得“原型”支持,形成概念的“模式直觀”,以彌補(bǔ)沒有經(jīng)歷概念形成的“原始”過程而出現(xiàn)的概念加工不充分、理解不深刻的缺陷. 概念教學(xué)的基本原則是采用與概念類型、特征及其獲得方式相適應(yīng)的方式,以有效促進(jìn)概念的理解.由于數(shù)學(xué)概念大都可通過邏輯建構(gòu)而產(chǎn)生,因此概念同化是學(xué)生獲得數(shù)學(xué)概念的主要方式,尤其是中學(xué)階段,這樣能讓學(xué)生更清楚地認(rèn)識概念的系統(tǒng)性和層次性,有利于學(xué)生從概念的聯(lián)系中學(xué)習(xí)概念,在概念系統(tǒng)中體會概念的作用,從而不僅促進(jìn)學(xué)生的概念理解,而且有利于概念的靈活應(yīng)用.當(dāng)然,如果學(xué)生的認(rèn)知結(jié)構(gòu)中,作為新概念學(xué)習(xí)“固著點(diǎn)”的已有知識不充分時,則只能采取概念形成方式. 概念符號化是概念教學(xué)的必要步驟,這是因?yàn)閿?shù)學(xué)概念大都由規(guī)定的數(shù)學(xué)符號表示,這使數(shù)學(xué)的表示形式更簡明、清晰、準(zhǔn)確,更便于交流與心理操作.這里要注意讓學(xué)生掌握概念符號的意義,并要進(jìn)行數(shù)學(xué)符號和其意義的心理轉(zhuǎn)換技能訓(xùn)練,以促進(jìn)他們對數(shù)學(xué)符號意義的理解.

    問題四:這個數(shù)學(xué)概念是什么意思 數(shù)學(xué)中常用的符號,

    Σ,求和(連加)。

    ∏,求積(連乘)。

    問題五:數(shù)學(xué)的定義是什么? 數(shù)學(xué)(mathematics或maths),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,從某種角度看屬于形式科學(xué)的一種。

    而在人類歷史發(fā)展和社會生活中,數(shù)學(xué)也發(fā)揮著不可替代的作用,也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。

    問題六:歷史上關(guān)于數(shù)學(xué)概念的定義有哪些 1、公元前4世紀(jì)的希臘哲學(xué)家亞里士多德將數(shù)學(xué)定義為“數(shù)學(xué)是量的科學(xué)”。

    2、16世紀(jì)英國哲學(xué)家培根(1561―1626)將數(shù)學(xué)分為“純粹數(shù)學(xué)” 與“混合數(shù)學(xué)”。

    3、在17世紀(jì),笛卡兒(1596―1650) 認(rèn)為:“凡是以研究順序(order)和度量(measure)為目的的科學(xué)都與數(shù)學(xué)有關(guān)”。

    4、19世紀(jì)恩格斯這樣來論述數(shù)學(xué):“純數(shù)學(xué)的對象是現(xiàn)實(shí)世界的空間形式與數(shù)量關(guān)系”。根據(jù)恩格斯的論述,數(shù)學(xué)可以定義為:“數(shù)學(xué)是研究現(xiàn)實(shí)世界的空間形式與數(shù)量關(guān)系的科學(xué)。”

    5、19世紀(jì)晚期, *** 論的創(chuàng)始人康托爾(1845―1918)曾經(jīng)提出: “數(shù)學(xué)是絕對自由發(fā)展的學(xué)科,它只服從明顯的思維,就是說它的概念必須擺脫自相矛盾,并且必須通過定義而確定地、有秩序地與先前已經(jīng)建立和存在的概念相聯(lián)系”。

    6、20世紀(jì)50年代,前蘇聯(lián)一批有影響的數(shù)學(xué)家試圖修正前面提到的恩格斯的定義來概括現(xiàn)代數(shù)學(xué)發(fā)展的特征:“現(xiàn)代數(shù)學(xué)就是各種量之間的可能的,一般說是各種變化著的量的關(guān)系和相互聯(lián)系的數(shù)學(xué)”。

    7、從20世紀(jì)80年代開始,又出現(xiàn)了對數(shù)學(xué)的定義作符合時代的修正的新嘗試。主要是一批美國學(xué)者,將數(shù)學(xué)簡單地定義為關(guān)于“模式” 的科學(xué):“【數(shù)學(xué)】這個領(lǐng)域已被稱作模式的科學(xué),其目的是要揭示人們從自然界和數(shù)學(xué)本身的抽象世界中所觀察到的結(jié)構(gòu)和對稱性” 。

    問題七:數(shù)學(xué)上值和數(shù)概念上區(qū)別是什么 某個物體所含數(shù)量的多少稱這個物體的值,也就是說這個物體的值就是對它的量化結(jié)果。

    可以換個相同的概念說明:某種商品可以賣多少錢,就叫這個商品的值,這和數(shù)學(xué)中值的概念基本是一個意思。

    四、小學(xué)數(shù)學(xué)概念的小學(xué)數(shù)學(xué)概念教學(xué)意義

    首先,數(shù)學(xué)概念是數(shù)學(xué)基礎(chǔ)知識的重要組成部分。

    小學(xué)數(shù)學(xué)的基礎(chǔ)知識包括:概念、定律、性質(zhì)、法則、公式等,其中數(shù)學(xué)概念不僅是數(shù)學(xué)基礎(chǔ)知識的重要組成部分,而且是學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ)。學(xué)生掌握基礎(chǔ)知識的過程,實(shí)際上就是掌握概念并運(yùn)用概念進(jìn)行判斷、推理的過程。數(shù)學(xué)中的法則都是建立在一系列概念的基礎(chǔ)上的。事實(shí)證明,如果學(xué)生有了正確、清晰、完整的數(shù)學(xué)概念,就有助于掌握基礎(chǔ)知識,提高運(yùn)算和解題技能。相反,如果一個學(xué)生概念不清,就無法掌握定律、法則和公式。例如,整數(shù)百以內(nèi)的筆算加法法則為:“相同數(shù)位對齊,從個位加起,個位滿十,就向十位進(jìn)一?!币箤W(xué)生理解掌握這個法則,必須事先使他們弄清“數(shù)位”、“個位”、“十位”、“個位滿十”等的意義,如果對這些概念理解不清,就無法學(xué)習(xí)這一法則。又如,圓的面積公式S=πr2,要以“圓”、“半徑”、“平方”、“圓周率”等概念為基礎(chǔ)??傊W(xué)數(shù)學(xué)中的一些概念對于今后的學(xué)習(xí)而言,都是一些基本的、基礎(chǔ)的知識。小學(xué)數(shù)學(xué)是一門概念性很強(qiáng)的學(xué)科,也就是說,任何一部分內(nèi)容的教學(xué),都離不開概念教學(xué)。

    其次,數(shù)學(xué)概念是發(fā)展思維、培養(yǎng)數(shù)學(xué)能力的基礎(chǔ)。

    概念是思維形式之一,也是判斷和推理的起點(diǎn),所以概念教學(xué)對培養(yǎng)學(xué)生的思維能力能起重要作用。沒有正確的概念,就不可能有正確的判斷和推理,更談不上邏輯思維能力的培養(yǎng)。例如,“含有未知數(shù)的等式叫做方程”,這是一個判斷。在這個判斷中,學(xué)生必須對“未知數(shù)”、“等式”這幾個概念十分清楚,才能形成這個判斷,并以此來推斷出下面的6道題目,哪些是方程。

    (1)56+23=79(2)23-x=67(3)x÷5=4.5

    (4)44×2=88(5)75÷x=4(6)9+x=123

    在概念教學(xué)過程中,為了使學(xué)生順利地獲取有關(guān)概念,常常要提供豐富的感性材料讓學(xué)生觀察,在觀察的基礎(chǔ)上通過教師的啟發(fā)引導(dǎo),對感性材料進(jìn)行比較、分析、綜合,最后再抽象概括出概念的本質(zhì)屬性。通過一系列的判斷、推理使概念得到鞏固和運(yùn)用。從而使學(xué)生的初步邏輯思維能力逐步得到提高。

    以上就是關(guān)于數(shù)學(xué)大概念教學(xué)是什么意思相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。


    推薦閱讀:

    手繪創(chuàng)意logo圖片(手繪創(chuàng)意logo圖片數(shù)學(xué))

    小學(xué)數(shù)學(xué)八大能力

    電子商務(wù)和會計(jì)哪個好(數(shù)學(xué)差的女生學(xué)會計(jì)難嗎)

    做生意口碑的好句子(適合生意人發(fā)的朋友圈)

    教學(xué)簡案樣板(教學(xué)簡案樣板怎么寫)