HOME 首頁
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運(yùn)營
CASE 服務(wù)案例
NEWS 熱點資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    openai開源項目(openhd開源項目)

    發(fā)布時間:2023-03-13 01:23:33     稿源: 創(chuàng)意嶺    閱讀: 126        問大家

    大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于openai開源項目的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。

    ChatGPT國內(nèi)免費(fèi)在線使用,一鍵生成原創(chuàng)文章、方案、文案、工作計劃、工作報告、論文、代碼、作文、做題和對話答疑等等

    只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁版、PC客戶端

    官網(wǎng):https://ai.de1919.com

    本文目錄:

    openai開源項目(openhd開源項目)

    一、2022年值得關(guān)注的5個AI趨勢 – thenewstack

    COVID-19 大流行加速了 2021 年人工智能或機(jī)器學(xué)習(xí)的采用。企業(yè)對自動化的需求以及人工智能硬件和軟件的進(jìn)步正在將應(yīng)用人工智能變?yōu)楝F(xiàn)實。

    以下是 2022 年的五種人工智能趨勢:

    趨勢 1:大型語言模型 (LLM) 定義下一波對話式 AI

    語言模型是基于自然語言處理技術(shù)和算法來確定給定單詞序列在句子中出現(xiàn)的概率,這些模型可以預(yù)測句子中的下一個單詞,總結(jié)文本信息,甚至可以從純文本創(chuàng)建可視化圖表。

    大型語言模型 (LLM) 在包含大量數(shù)據(jù)的海量數(shù)據(jù)集上進(jìn)行訓(xùn)練。Google 的BERT和 OpenAI 的GPT-2和GPT-3是 LLM 的一些例子。眾所周知,GPT-3 在 570 GB 的文本上訓(xùn)練了 1750 億個參數(shù)。這些模型可以生成從簡單的論文到復(fù)雜的金融模型的任何東西。

    包括OpenAI、Hugging Face、Cohere、AI21 Labs在內(nèi)的AI 初創(chuàng)公司正在通過訓(xùn)練具有數(shù)十億參數(shù)的模型來突破 LLM 的界限。

    華為的PanGu-Alpha和百度的Ernie 3.0 Titan接受了包括電子書、百科全書和社交媒體在內(nèi)的 TB 級中文數(shù)據(jù)集的訓(xùn)練。

    2022 年,我們將看到大型語言模型成為下一代對話式 AI 工具的基礎(chǔ)。

    趨勢二:多模態(tài)人工智能的興起

    深度學(xué)習(xí)算法傳統(tǒng)上專注于從一種數(shù)據(jù)源訓(xùn)練模型。例如,

    這種類型的機(jī)器學(xué)習(xí)與單模態(tài) AI 相關(guān)聯(lián),其中結(jié)果被映射到數(shù)據(jù)類型的單一來源——圖像、文本、語音。

    多模態(tài) AI 是計算機(jī)視覺和對話式 AI 模型的終極融合,可提供更接近人類感知的強(qiáng)大場景。它將視覺和語音模式結(jié)合起來,將人工智能推理提升到一個新的水平。

    多模式 AI 的最新示例是來自 OpenAI 的DALL-E,它可以從文本描述中生成圖像。

    谷歌的多任務(wù)統(tǒng)一模型 ( MUM ) 是多模式 AI 的另一個例子。它承諾通過基于從 75 種不同語言中挖掘的上下文信息對結(jié)果進(jìn)行優(yōu)先排序,從而增強(qiáng)用戶的搜索體驗。MUM 使用 T5 文本到文本框架,比 BERT(流行的基于轉(zhuǎn)換器的自然語言處理模型)強(qiáng)大 1000 倍。

    NVIDIA 的GauGAN2模型將根據(jù)簡單的文本輸入生成照片般逼真的圖像。

    趨勢 3:簡化和流線型 MLOps

    機(jī)器學(xué)習(xí)操作 (MLOps) 或?qū)C(jī)器學(xué)習(xí)應(yīng)用于工業(yè)生產(chǎn)的實踐非常復(fù)雜!

    MLOps 是已納入基于云的 ML 平臺的概念之一,例如Amazon Web Services的Amazon SageMaker、Azure ML和Google Vertex AI。但是,這些功能不能用于混合和邊緣計算環(huán)境。因此,邊緣的監(jiān)控模型被證明是企業(yè)面臨的重大挑戰(zhàn)。在處理計算機(jī)視覺系統(tǒng)和對話式 AI 系統(tǒng)時,邊緣監(jiān)控模型變得更具挑戰(zhàn)性。

    由于Kubeflow和MLflow等開源項目的成熟,MLOps 變得相當(dāng)容易獲得。未來幾年,將出現(xiàn)一種流線型和簡化的 MLOps 方法,涵蓋云和邊緣計算環(huán)境。

    趨勢 4:AI 驅(qū)動的低代碼開發(fā)

    人工智能將影響 IT 的編程和開發(fā)。

    大型語言模型 (LLM) 的興起和更廣泛的開源代碼可用性使 IDE 供應(yīng)商能夠構(gòu)建智能代碼生成和分析。

    望未來,期待看到可以從內(nèi)聯(lián)注釋生成高質(zhì)量和緊湊代碼的工具。他們甚至能夠?qū)⒂靡环N語言編寫的代碼翻譯成另一種語言,通過將遺留代碼轉(zhuǎn)換為現(xiàn)代語言來實現(xiàn)應(yīng)用程序現(xiàn)代化。

    趨勢五:新型垂直化人工智能解決方案

    Amazon Connect和Google Contact Center AI是垂直整合的經(jīng)典例子。兩者都利用機(jī)器學(xué)習(xí)功能來執(zhí)行智能路由、由機(jī)器人驅(qū)動的對話以及對聯(lián)絡(luò)中心代理的自動協(xié)助。

    這些服務(wù)是為零售和制造垂直行業(yè)高度定制的。

    二、啊哪個國家

    Chatgpt并不屬于任何一個國家,它是由一家名為OpenAI的美國人工智能實驗室所研發(fā)出來的。OpenAI成立于2015年,目的是促進(jìn)開源人工智能技術(shù)的發(fā)展和推廣。Chatgpt是OpenAI團(tuán)隊研發(fā)的一款基于自然語言處理技術(shù)的智能對話系統(tǒng),可以通過學(xué)習(xí)大量的語言數(shù)據(jù)進(jìn)行智能問答和交流,其應(yīng)用領(lǐng)域非常廣泛,可以用于客服系統(tǒng)、智能助手、教育培訓(xùn)等方面。目前,Chatgpt已經(jīng)成為了現(xiàn)實中的AI機(jī)器人,獲得了廣泛的應(yīng)用。

    三、chatgtp開源嗎

    不開源。ChatGPT并沒有開源,而且官方也沒有任何關(guān)于ChatGPT的開源計劃。chatgpt是OpenAI開發(fā)的一個大型預(yù)訓(xùn)練語言模型,通俗一點說就是一個聊天機(jī)器人。它是GPT-3模型的變體,ChatGPT經(jīng)過了訓(xùn)練,可以根據(jù)接收到的輸入生成類似人類的文本響應(yīng),具有更自然、更多樣化的特點。用戶可以向它提出無數(shù)問題,而且通常會得到有用的答案。

    四、只需要十分之一數(shù)據(jù),就能通關(guān)四大視覺任務(wù),居然還開源了

    Github鏈接:https://github.com/opengvlab

    家人們,你們有沒有這種苦惱?

    搬一次家就換一次家具,那些又貴又重的家具既不好搬運(yùn),又不好全部帶走。

    下一次又重新購置一遍家具,浪費(fèi)錢不說,關(guān)鍵是來來回回都做一樣的事情!家具還沒用過幾次,利用率不高呀!

    這種搬家的苦惱,就好比AI領(lǐng)域,做幾個任務(wù)就需要開發(fā)幾個高度定制的模型,不僅所需的數(shù)據(jù)采集量非常大,每次還都得從頭標(biāo)注。既提不起數(shù)據(jù)的學(xué)習(xí)效率,又耗費(fèi)巨大的數(shù)據(jù)獲取成本。

    光是AI前端研究就耗費(fèi)如此巨大的精力,更別提應(yīng)用場景中數(shù)以萬計的長尾任務(wù)。

    那怎么辦?

    做一款通用的深度學(xué)習(xí)模型,才是關(guān)鍵。

    1 通用,才是技術(shù)根本

    目前,通用語言模型(GLM)已經(jīng)取得了令人矚目的進(jìn)展,比如BERT、T5和GPT-3,它們在應(yīng)對廣泛的語言下游任務(wù)時已經(jīng)游刃有余。

    相形之下,通用視覺模型(GVM)的研究遲遲未交出一份令人滿意的答卷。

    以往的大多數(shù) GVM 研究主要利用一種監(jiān)督信號來源,如 ViT-G/14 采用有標(biāo)簽監(jiān)督,SEER 采用樣本的不同增強(qiáng)之間的對比學(xué)習(xí),CLIP采用圖片文本對進(jìn)行監(jiān)督。如果是在單個監(jiān)督信號下進(jìn)行的預(yù)訓(xùn)練,這幾種范式確實能夠生成在固定場景下表現(xiàn)良好的模型。但如果用在場景多元、任務(wù)多樣的下游場景,這些模型就難以勝任了。

    比如現(xiàn)在最火的自動駕駛, 汽車 處于移動狀態(tài),既要看到路況,又要看到紅綠燈,還要注意行人,甚至在智能座艙興起后,還要和語言技術(shù)、LBS場景服務(wù)協(xié)同,這么多的感知數(shù)據(jù)與協(xié)同任務(wù),這么多隨機(jī)的新任務(wù),無論在體量還是維度方面,都對視覺模型的要求極大提高。

    這時,打造一款通用視覺模型,降低研發(fā)門檻,尤其是學(xué)術(shù)界的時間成本、資金成本,才能暢享下游的極致場景體驗。

    去年11月,上海人工智能實驗室聯(lián)合商湯 科技 、香港中文大學(xué)、上海交通大學(xué)發(fā)布通用視覺技術(shù)體系“書生”(INTERN),一套持續(xù)學(xué)習(xí)框架,用于系統(tǒng)化解決當(dāng)下人工智能視覺領(lǐng)域中存在的任務(wù)通用、場景泛化和數(shù)據(jù)效率等一系列瓶頸問題。

    前不久,上海人工智能實驗室聯(lián)合商湯 科技 發(fā)布通用視覺開源平臺OpenGVLab,面向?qū)W術(shù)界和產(chǎn)業(yè)界開放其超高效預(yù)訓(xùn)練模型、超大規(guī)模公開數(shù)據(jù)集,以及業(yè)內(nèi)首個針對通用視覺模型的評測基準(zhǔn)。

    這些開源技術(shù),究竟有何魔力?

    2 大力出奇跡,打造通用視覺模型

    “書生” (INTERN),就是練就通用視覺能力的底層技術(shù)。

    從技術(shù)實現(xiàn)上講,“書生”技術(shù)體系由由七大模塊組成,包括三個基礎(chǔ)設(shè)施模塊和四個訓(xùn)練階段構(gòu)成。

    書生(INTERN)結(jié)構(gòu)圖

    首先,通用視覺數(shù)據(jù)系統(tǒng)。

    這是一個超大規(guī)模的精標(biāo)數(shù)據(jù)集,擁有100億個樣本和各種監(jiān)督信號,并依照四大視覺任務(wù)分別設(shè)置了四個數(shù)據(jù)子集:多模態(tài)數(shù)據(jù)GV-D- 10B分類標(biāo)注的GV-Dc-36M、檢測標(biāo)注的GV-Dd-3M、分割標(biāo)注的GV-Ds-143K。

    另外,這一數(shù)據(jù)集還包含11.9萬的標(biāo)簽系統(tǒng),不僅涵蓋了自然界的眾多領(lǐng)域和目前計算機(jī)視覺研究中的幾乎所有標(biāo)簽,還擴(kuò)充了大量細(xì)粒度標(biāo)簽,涵蓋各類圖像中的屬性、狀態(tài)等。

    而這,就是書生“大力出奇跡”的一大注腳。

    其次,通用視覺模型結(jié)構(gòu)。

    它是由一個具有CNN和Transformer的統(tǒng)一搜索空間構(gòu)建而成。

    為何要建立這樣的混合結(jié)構(gòu)?要知道,多年來,卷積神經(jīng)網(wǎng)絡(luò)(CNN)一直主導(dǎo)著視覺表征學(xué)習(xí),并在圖像分類、目標(biāo)檢測和語義分割等下游任務(wù)中表現(xiàn)出穩(wěn)定的可遷移性。但最近幾年,Vision Transformer (ViT)僅使用普通的Transformer結(jié)構(gòu)就能作為圖像編碼模型在ImageNet-1k上取得媲美 CNN 的性能,在大規(guī)模數(shù)據(jù)集上 ViT 更是展示出比 CNN 更大的潛力。

    盡管ViT在性能上有優(yōu)點,但純Transformer網(wǎng)絡(luò)相比卷積神經(jīng)網(wǎng)絡(luò)缺乏某些歸納偏置(inductive biases),因此需要更多的數(shù)據(jù)和計算資源。此外,自注意的計算成本相對于輸入的數(shù)量是平方的,限制了對高輸入分辨率的應(yīng)用。因此,將CNN和Transformer和MLP結(jié)合起來,平衡效率和有效性兩個方面,才是模型通用的關(guān)鍵。

    這種兼具更好的泛化能力和更高的模型容量的模型結(jié)構(gòu)名為MetaNet。在MetaNet網(wǎng)絡(luò)結(jié)構(gòu)族里面進(jìn)行網(wǎng)絡(luò)結(jié)構(gòu)搜索,從而得到最優(yōu)的一個模型訓(xùn)練結(jié)構(gòu)。

    統(tǒng)一搜索的MetaNet架構(gòu):Conv和Trans分別表示卷積和Transformer。C和S為每一階輸出通道數(shù)和步幅。

    具體來看,MetaNet不僅基于強(qiáng)化學(xué)習(xí) 的PPO算法提出了統(tǒng)一搜索架構(gòu),并且,為了避免傳統(tǒng)的下采樣模塊會成為模型性能的瓶頸,“書生“結(jié)合了包含 local-global-DSM (LG_DSM) 和 global-DSM (G-DSM)的context-aware down-sampling modules (DSM),用來代替原本的下采樣模塊。

    因此,在淺層,模型依然使用卷積來提取特征,但在深層,模型卻能將Transformer模塊和LG-DSM結(jié)合使用,以便于更好地提取全局信息。

    同時,書生還基于最大的MetaNet-B15蒸餾出了多達(dá)13種不同的模型結(jié)構(gòu),共24種不同的模型權(quán)重,現(xiàn)已全部開源。

    這些模型結(jié)構(gòu)基本涵蓋了現(xiàn)有市面上大部分的主流backbone,不僅能夠很輕易地遷移到所需要的算法框架作為新網(wǎng)絡(luò)預(yù)訓(xùn)練的初始化,而且只需要更短的訓(xùn)練時間就可以達(dá)到比原來更好的訓(xùn)練效果。

    MetaNet 模型與其他模型結(jié)構(gòu)比較,結(jié)果如下:

    基于卷積、Transformer和兩者混合的結(jié)構(gòu),分別用C,T和H表示,可以看出,在圖像分類性能上,MetaNet系列的MN-B1,MN-B4和MN-B7,和其他的SOTA模型相比,不僅有更高的精度,還有更低的FLOPS和參數(shù)量。

    除了分類任務(wù),把MetaNet做為檢測和分割的backbone,在COCO數(shù)據(jù)集上使用Mask R-CNN結(jié)構(gòu)訓(xùn)練,結(jié)果發(fā)現(xiàn):在模型參數(shù)量更小的前提下,MN-B4比Swin-T精度高出2到4個點。另外還在ADE20K數(shù)據(jù)集上進(jìn)行了語義分割任務(wù),MN-B4的mIoU指標(biāo)比Swin-T高出5個點之多。

    上述兩個實驗結(jié)果表明,MetaNet系列模型結(jié)構(gòu),在模型精度與計算量之間,都達(dá)到了新的SOTA!

    最后,通用視覺評測基準(zhǔn)。

    視覺評測基準(zhǔn)GV-B ,就像是一個「擂臺」。

    如下表所示,測評基準(zhǔn)收集了 26 個下游任務(wù)數(shù)據(jù)集,囊括了 4 種視覺任務(wù)類型:分類,檢測,分割和深度估計。

    在設(shè)置上,該基準(zhǔn)引入了百分比樣本(percentage-shot),只需要選取整個數(shù)據(jù)集的一部分,例如 10%、20% ,對比縮小下游任務(wù)的訓(xùn)練數(shù)據(jù)量后的模型性能。

    與傳統(tǒng)的少樣本設(shè)置相比,這種百分比樣本設(shè)置可以很好地保留原始數(shù)據(jù)集的長尾分布等屬性,并減輕對樣本選擇的敏感性。因為有一些數(shù)據(jù)集樣本類別分布不平衡,比如下表中的VOC07+12,百分比數(shù)據(jù)的劃分方式卻會繼承這種分布情況。

    右側(cè)三列avg,min和max,分別表示在10%的數(shù)據(jù)中,不同類別樣本數(shù)量的平均值,最小值和最大值。

    結(jié)合上述數(shù)據(jù)集和任務(wù)類型,論文選取了一些具有代表性的模型來做評測對比。為了比較公平性,該對比使用了這些模型的官方預(yù)訓(xùn)練權(quán)重。這些模型包括:

    有了超大精標(biāo)數(shù)據(jù)集、模型結(jié)構(gòu),以及評測基準(zhǔn)后,已經(jīng)是萬事俱備,只欠訓(xùn)練。

    書生作為中國古代讀書人的經(jīng)典形象,代表著一個通過不斷學(xué)習(xí)、不斷成長進(jìn)而擁有各方面才能的人格化角色:從基礎(chǔ)的知識技能學(xué)習(xí)開始,到對多種專業(yè)知識觸類旁通,進(jìn)而成長為擁有通用知識的通才。借此意象,“書生”(INTERN)系統(tǒng)可通過持續(xù)學(xué)習(xí),舉一反三,逐步實現(xiàn)通用視覺領(lǐng)域的融會貫通,最終實現(xiàn)靈活高效的模型部署。

    下面就來看看,這套系統(tǒng)是如何通過訓(xùn)練,一步步從生手變成專家再到多面手,最終在各種任務(wù)中大顯身手。

    第一階段,訓(xùn)練的是基礎(chǔ)能力,被稱為“基礎(chǔ)模型”(Amateur)。

    然而CLIP需要400M的圖像-文本對進(jìn)行前訓(xùn)練,囿于極大的數(shù)據(jù)量,CLIP很難進(jìn)一步發(fā)展。但“書生”提出了一種新的訓(xùn)練范式,DeCLIP(Data efficient CLIP ),能夠同時使用來自圖像-文本、圖像-圖像和文本-文本對的監(jiān)督信號進(jìn)行模型預(yù)訓(xùn)練,從而更有效地實現(xiàn)通用性。

    此外,為了充分利用大規(guī)模多模態(tài)數(shù)據(jù)獲取基礎(chǔ)模型的優(yōu)勢,這一階段提出了Upstream-Amateur (Up-A)視覺語言預(yù)訓(xùn)練框架,同時挖掘模態(tài)內(nèi)和跨模態(tài)知識。

    這一訓(xùn)練框架分為兩個預(yù)訓(xùn)練階段:Upstream-Amateur for Global Representation (Up-A-G)和Upstream-Amateur for Local Representation (Up-A-L)。

    其中,Up-A-G(左)使用群體監(jiān)督功能,從更豐富的監(jiān)督中學(xué)習(xí)。Up-A-L(右)采用局部自我監(jiān)督學(xué)習(xí)方法,對訓(xùn)練好的視覺-語言模型進(jìn)行調(diào)整,從而提高自身在密集預(yù)測CV任務(wù)中的表現(xiàn)。

    Upstream-Amateur的框架

    得益于這些內(nèi)在的監(jiān)督,DeCLIP-ResNet50可以在ImageNet上實現(xiàn)60.4%的zero-shot 精度第一。這比CLIP-ResNet50高出0.8%,數(shù)據(jù)使用量少了81%。當(dāng)遷移到下游任務(wù)時,DeCLIP-ResNet50在11個視覺數(shù)據(jù)集中有8個優(yōu)于CLIP。

    更關(guān)鍵的是,訓(xùn)練完成的Upstream-Amateur為后續(xù)的訓(xùn)練階段提供了一個很高的起點。

    第二階段,訓(xùn)練的是專業(yè)能力,被稱為“專家模型”(Expert)。

    Up-A階段得到的基礎(chǔ)模型,在一般的視覺識別問題上顯示出優(yōu)異的性能。但要完全掌握檢測、分割等更具體的任務(wù),還需要在每個任務(wù)中進(jìn)行更專業(yè)的預(yù)訓(xùn)練,這就促成了第二個階段的到來,專家模型。

    對于每個專家,“書生”采用了一種簡單的多頭設(shè)計,每個頭是一個特定數(shù)據(jù)集的子網(wǎng)絡(luò),從一個公共的、共享的“主干”分支出來。比如Up-E (C)、Up-E (D)和Up-E (S),分別用于圖像分類、對象檢測和語義分割。

    第三階段,訓(xùn)練的是組合能力,被稱為“通才模型”(Generalist)。

    上述的多任務(wù)是指不同數(shù)據(jù)集(如ImageNet和CIFAR)的一個視覺問題(如分類),或一個數(shù)據(jù)集的多個視覺問題(如分類和檢測)。但關(guān)鍵是,如何將專家整合到一個統(tǒng)一的模型中,獲得一個更加通用的視覺模型。因此,在預(yù)訓(xùn)練“專家”階段之后,又將“通才”作為第三個預(yù)訓(xùn)練階段,以進(jìn)一步統(tǒng)一特征表示。

    “書生”提出了一個新的范式,名為“混合參數(shù)共享”,從而開發(fā)一個名為“多面手”的通才模型。

    具體來說,由于專家捕獲的知識是相互關(guān)聯(lián)的,當(dāng)專家的特征融合為一個共享的表示形式時,再利用基于軟共享的跨任務(wù)知識轉(zhuǎn)移和基于硬共享的通用表示學(xué)習(xí)的方法,在不引入任務(wù)沖突的情況下在專家之間傳遞信息(特征轉(zhuǎn)移),從而進(jìn)一步提高了多任務(wù)訓(xùn)練的模型(專家)性能,即“通才”能力。

    在結(jié)構(gòu)上,通才模型是所有專家的一個相互關(guān)聯(lián)的版本,因此可以把每個“專家主干”稱為“通才分支”。此外,我們還可以根據(jù)訓(xùn)練相應(yīng)專家的任務(wù)將通才中的每個分支分為圖像、補(bǔ)丁和像素。但無論是軟共享還是硬共享,都意味著從專家模型到通才模型的一次躍升。

    在經(jīng)歷了前三個訓(xùn)練階段模塊后,終于來到最后的任務(wù)遷移階段 (Adaptation)。

    這個階段屬于技術(shù)鏈條的下游,用來解決各式各樣不同類型的任務(wù),而這也是最考驗“書生”舉一反三能力的時刻。它需要在這個階段把之前學(xué)到的通用知識,融會貫通地應(yīng)用到不同特定任務(wù)中。

    在此之前,很多遷移學(xué)習(xí)方法確實取得了很多進(jìn)步,但問題是,這些方法既沒有利用上游預(yù)訓(xùn)練中的隱含信息,也沒有考慮到下游數(shù)據(jù)在少鏡頭場景中的不足。

    因此,“書生”提出了一種Multi-stage Fine-tuning (MF)方法,緩解在數(shù)據(jù)較少的情況下傳輸?shù)睦щy,再通過將上游數(shù)據(jù)編碼成生成模型,即VQ-GAN,可以將預(yù)訓(xùn)練的模型轉(zhuǎn)移到多個任務(wù)和領(lǐng)域,而無需每次都使用上游數(shù)據(jù),而這也使得“書生”更具通用性和可擴(kuò)展性。

    多級微調(diào)(MF)概述:VQ-GAN模型首先在第一階段使用上游數(shù)據(jù)進(jìn)行訓(xùn)練,然后在第二階段由它重構(gòu)下游數(shù)據(jù)。在此之后,第三階段只對新增任務(wù)的特定參數(shù)進(jìn)行重新表示的圖像訓(xùn)練,第四階段則通過下游數(shù)據(jù)對整個模型進(jìn)行微調(diào)。

    至此,一個具有持續(xù)學(xué)習(xí)能力的通用視覺模型終于出世。

    而具體有哪些提升,不如看一下更直觀的實驗數(shù)據(jù)對比!

    3 一網(wǎng)打盡視覺領(lǐng)域四大任務(wù)

    視覺領(lǐng)域,任務(wù)繁多,主流任務(wù)包含分類、目標(biāo)檢測、語義分割、深度估計四大類型。

    在這四大任務(wù)中,最強(qiáng)大的視覺模型還是去年OpenAI發(fā)布的CLIP模型。但相比較而言,“書生”則在準(zhǔn)確率和數(shù)據(jù)使用效率上都有所提升。

    1、精度表現(xiàn)

    通過對“書生”訓(xùn)練出的模型在GV-B上的評測對比,發(fā)現(xiàn)經(jīng)過多階段預(yù)訓(xùn)練的MetaNet精度表現(xiàn)優(yōu)異。

    在ImageNet等26個最具代表性的下游場景中, “書生”在分類、目標(biāo)檢測、語義分割及深度估計等四大任務(wù)上,平均錯誤率分別降低了40.2%、47.3%、34.8%和9.4%。

    書生(INTERN)與CLIP-R50x16在不同樣本量上的性能對比,正確率展示

    2、數(shù)據(jù)使用效率

    “書生”在數(shù)據(jù)效率方面的提升尤為矚目:只需要1/10的下游數(shù)據(jù),就能超過CLIP基于完整下游數(shù)據(jù)訓(xùn)練的準(zhǔn)確度。

    以CLIP-R50x16和Up-G MN-B15在GV-B的評測對比為例,分別在分類、目標(biāo)檢測、語義分割、深度估計四大類型的26個下游任務(wù)數(shù)據(jù)集上進(jìn)行了評測,僅使用了10%數(shù)據(jù)進(jìn)行訓(xùn)練的Up-G MN-B15模型,在絕大部分?jǐn)?shù)據(jù)集上都能比使用了全部訓(xùn)練數(shù)據(jù)的CLIP-R50有更好的精度表現(xiàn)。這表明,經(jīng)過多階段預(yù)訓(xùn)練的MetaNet具有極強(qiáng)的泛化能力,能夠在僅有少量的訓(xùn)練樣本情況下,達(dá)到SOTA的精度表現(xiàn)。

    在下游視覺場景中,小樣本訓(xùn)練帶來的是極高的訓(xùn)練速度,以及極低的訓(xùn)練成本。

    例如在花卉種類識別任務(wù)上,“書生“只需要每一類型的花卉提供兩個訓(xùn)練樣本,就能實現(xiàn)99.7%的準(zhǔn)確率。

    這個花卉數(shù)據(jù)集由102種英國常見的花組成,每個類別有40至258張圖片。其中包含有很大的比例、姿勢和光線變化。

    102個類別的花卉數(shù)據(jù)集:

    https://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html

    4 通用視覺平臺,已正式開源

    如此強(qiáng)大的通用視覺訓(xùn)練模型已經(jīng)正式開源!

    更關(guān)鍵的是,連同上述講到的標(biāo)簽數(shù)據(jù)集、網(wǎng)絡(luò)結(jié)構(gòu)以及評測基準(zhǔn),均在OpenGVLab被統(tǒng)一打包開源。

    其中的網(wǎng)絡(luò)結(jié)構(gòu)除了MetaNet,還包含大家普遍使用的ResNet, MobileNet, ViT, EfficientNet等,以滿足不同場景的應(yīng)用,賦能計算機(jī)視覺。

    然而,「書生」的布局不止于此。

    OpenGVLab將與上海人工智能實驗室此前發(fā)布的OpenMMLab、OpenDILab一道,共同構(gòu)筑開源體系OpenXLab,持續(xù)推進(jìn)通用人工智能的技術(shù)突破和生態(tài)構(gòu)建。

    一位已經(jīng)使用過此次開源平臺的自動駕駛算法研究員表示:“書生系列模型充分覆蓋了從移動可部署的小模型,到超大規(guī)模自研結(jié)構(gòu),為行業(yè)帶來了希望,尤其是它的收斂速度,大幅節(jié)省了訓(xùn)練開銷,是技術(shù)落地的一大助推器?!?

    不僅是自動駕駛領(lǐng)域,智慧城市、智慧醫(yī)療、智慧交通,以及千千萬萬其他的智能化領(lǐng)域,都將獲得通用視覺模型帶來的技術(shù)紅利。

    一位騰訊研究員大贊OpenGVLab:“能把這么大的工作開源出來真的是業(yè)界良心。簡單用了一下,確實比CLIP要更fine-grained(細(xì)粒度更高)。”

    而來自學(xué)界的師生也對此感慨有加:“OpenGVLab集成了大量各種量級的state-of-the-art(先進(jìn))模型,使用起來更得心應(yīng)手,省去了對不同codebase、不同模型繁瑣調(diào)研的煩惱?!?

    換句話說,當(dāng)那些代碼和公式脫去了枯燥乏味的外衣,人們才發(fā)現(xiàn)了真正的創(chuàng)造力。而這,也是技術(shù)創(chuàng)新與平臺開源的魅力所在。

    往近了說,用這款通用視覺模型打比賽,怕不是獎金多到飛起!在技術(shù)生產(chǎn)力的道路上,又誕生了一個致富小妙招!

    目前,“書生”技術(shù)報告《INTERN: A New Learning Paradigm Towards General Vision》已在arXiv平臺發(fā)布。

    論文地址:arxiv.org/abs/2111.08687

    以上就是關(guān)于openai開源項目相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。


    推薦閱讀:

    telescope詞根詞綴(tele 詞根)

    openai自動代碼生成器(openapi3.0 自動生成api文檔)

    怎么上chatopenai(怎么上插頭)

    開題報告重點難點分析(開題報告 難點)

    設(shè)計工作室宣傳文案(設(shè)計工作室宣傳文案怎么寫)