-
當(dāng)前位置:首頁(yè) > 創(chuàng)意學(xué)院 > 技術(shù) > 專題列表 > 正文
D
B (AB-AC)-BC=CB-BC=CB-(-CB)=2CB
-1 a10=(-1)11=-1
高一數(shù)學(xué)優(yōu)化學(xué)案人教版(高一優(yōu)化學(xué)案數(shù)學(xué)答案)
大家好!今天讓創(chuàng)意嶺的小編來(lái)大家介紹下關(guān)于高一數(shù)學(xué)優(yōu)化學(xué)案人教版的問題,以下是小編對(duì)此問題的歸納整理,讓我們一起來(lái)看看吧。
開始之前先推薦一個(gè)非常厲害的Ai人工智能工具,一鍵生成原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報(bào)告、論文、代碼、作文、做題和對(duì)話答疑等等
只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁(yè)版、PC客戶端
官網(wǎng):https://ai.de1919.com。
創(chuàng)意嶺作為行業(yè)內(nèi)優(yōu)秀的企業(yè),服務(wù)客戶遍布全球各地,如需了解相關(guān)業(yè)務(wù)請(qǐng)撥打電話175-8598-2043,或添加微信:1454722008
本文目錄:
一、人教版高一上冊(cè)數(shù)學(xué)內(nèi)容目錄(盡量仔細(xì)點(diǎn),謝謝)
您好,高一數(shù)學(xué)人教版內(nèi)容如下
第一章開頭,集合,主要講元素和集合的關(guān)系,以及集合和集合之間的關(guān)系
第一章末,簡(jiǎn)單地函數(shù)以及映射的定義,和對(duì)函數(shù)定義域,值域,解析式之間的關(guān)系的闡述
第二章開始主要講指數(shù)函數(shù)的性質(zhì)
第二章中間講對(duì)數(shù)函數(shù)的定義和性質(zhì)
第二章章末主要講到對(duì)數(shù)函數(shù)換底公式的應(yīng)用。
第三章主要講到函數(shù)的實(shí)際應(yīng)用
二、高一數(shù)學(xué)必修一知識(shí)提綱
隨著年級(jí)的不同,所接觸的數(shù)學(xué)課本知識(shí)難度也會(huì)有所變化,那怎樣可以更好應(yīng)對(duì)這一系列的變化,以下是我給大家整理的 高一數(shù)學(xué) 必修一知識(shí)提綱,希望對(duì)大家有所幫助,歡迎閱讀!
高一數(shù)學(xué)必修一知識(shí)提綱
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底 面相 似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
4、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
(4)球體的表面積和體積公式:V=;S=
5、空間點(diǎn)、直線、平面的位置關(guān)系
(1)平面
①平面的概念:A.描述性說(shuō)明;B.平面是無(wú)限伸展的;
②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個(gè)銳角內(nèi));也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面BC。
③點(diǎn)與平面的關(guān)系:點(diǎn)A在平面內(nèi),記作;點(diǎn)不在平面內(nèi),記作
點(diǎn)與直線的關(guān)系:點(diǎn)A的直線l上,記作:A∈l;點(diǎn)A在直線l外,記作Al;
直線與平面的關(guān)系:直線l在平面α內(nèi),記作lα;直線l不在平面α內(nèi),記作lα。
(2)公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。(即直線在平面內(nèi),或者平面經(jīng)過(guò)直線)
應(yīng)用:檢驗(yàn)桌面是否平;判斷直線是否在平面內(nèi)。用符號(hào)語(yǔ)言表示公理1:
(3)公理2:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)
(4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a。符號(hào)語(yǔ)言:
公理3的作用:①它是判定兩個(gè)平面相交的 方法 。
②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線x共點(diǎn)。
③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。
(5)公理4:平行于同一條直線的兩條直線互相平行
(6)空間直線與直線之間的位置關(guān)系
①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
②異面直線性質(zhì):既不平行,又不相交。
③異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線
④異面直線所成角:直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。
說(shuō)明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理
(2)在異面直線所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。
(3)求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。
B、證明作出的角即為所求角
C、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。
(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa∥α
(9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α∥β相交——有一條公共直線。α∩β=b
6、空間中的平行問題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行(線面平行→面面平行),
(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線線平行→面面平行),
(3)垂直于同一條直線的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。
③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。
性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
8、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為。
②平面的垂線與平面所成的角:規(guī)定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
解題時(shí),注意挖掘題設(shè)中兩個(gè)信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
9、空間直角坐標(biāo)系
(1)定義:如圖,是單位正方體.以A為原點(diǎn),分別以O(shè)D,O,OB的方向?yàn)檎较颍?/p>
建立三條數(shù)軸。這時(shí)建立了一個(gè)空間直角坐標(biāo)系Oxyz.
1)O叫做坐標(biāo)原點(diǎn)2)x軸,y軸,z軸叫做坐標(biāo)軸.3)過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。
(2)右手表示法:令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)閤軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
(3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)M的坐標(biāo)可以用有序?qū)崝?shù)組來(lái)表示,有序?qū)崝?shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記作(x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo))
數(shù)學(xué) 學(xué)習(xí)方法 總結(jié)
1.基礎(chǔ)很重要
是不是感覺數(shù)學(xué)都能考滿分的同學(xué),連書都不用看,其實(shí)數(shù)學(xué)學(xué)霸更重視基礎(chǔ)。,數(shù)學(xué)公式,幾何圖形的性質(zhì),函數(shù)的性質(zhì)等,都是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),甚至可以說(shuō)基礎(chǔ)的好壞,直接決定中考數(shù)學(xué)成績(jī)的高低。
因?yàn)橐恍┳罨A(chǔ)的知識(shí)沒有掌握透徹,導(dǎo)致做題的時(shí)候沒有思路?;A(chǔ)不牢、地動(dòng)山搖,一個(gè)小小的知識(shí)漏洞可能導(dǎo)致你在整一個(gè)題中都沒有思路,非常危險(xiǎn)。
2.錯(cuò)題本很重要
在所有科目中,數(shù)學(xué)這個(gè)科目最重要錯(cuò)題本學(xué)習(xí)法。特別提倡大家整理錯(cuò)題,對(duì)于錯(cuò)題本有一些小竅門,那就是平時(shí)如果堅(jiān)持整理錯(cuò)題,最終會(huì)導(dǎo)致自己錯(cuò)題本很多很厚,我們可以定期復(fù)習(xí),對(duì)于一些徹底掌握的,可以做個(gè)標(biāo)記,以后就不用再次復(fù)習(xí),這樣錯(cuò)題本使用起來(lái)就會(huì)效率更高。
3.做題要多 反思
數(shù)學(xué)學(xué)習(xí)要大量做題去鞏固,但做題不要只講究數(shù)量,更要講究質(zhì)量,遇到經(jīng)典題,綜合性高的題目時(shí),每道題寫完解答過(guò)程后,需要進(jìn)行分析和反思,多問幾個(gè)為什么,這樣才能把題真正做透。
4.數(shù)學(xué)知識(shí)形成體系
課本上的知識(shí)都是零散的,建議大家自己畫 思維導(dǎo)圖 把知識(shí)串起來(lái),畫思維導(dǎo)圖的過(guò)程,就是不斷理解,讓知識(shí)變成結(jié)構(gòu)的過(guò)程。
數(shù)學(xué)學(xué)習(xí)方法
1、基礎(chǔ)很重要
是不是感覺數(shù)學(xué)都能考滿分的同學(xué),連書都不用看,其實(shí)數(shù)學(xué)學(xué)霸更重視基礎(chǔ)。數(shù)學(xué)公式,幾何圖形的性質(zhì),函數(shù)的性質(zhì)等,都是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),甚至可以說(shuō)基礎(chǔ)的好壞,直接決定中考數(shù)學(xué)成績(jī)的高低。
因?yàn)橐恍┳罨A(chǔ)的知識(shí)沒有掌握透徹,導(dǎo)致做題的時(shí)候沒有思路?;A(chǔ)不牢、地動(dòng)山搖,一個(gè)小小的知識(shí)漏洞可能導(dǎo)致你在整一個(gè)題中都沒有思路,非常危險(xiǎn)。
2、錯(cuò)題本很重要
在所有科目中,數(shù)學(xué)這個(gè)科目最重要錯(cuò)題本學(xué)習(xí)法。特別提倡大家整理錯(cuò)題,對(duì)于錯(cuò)題本有一些小竅門,那就是平時(shí)如果堅(jiān)持整理錯(cuò)題,最終會(huì)導(dǎo)致自己錯(cuò)題本很多很厚,我們可以定期復(fù)習(xí),對(duì)于一些徹底掌握的,可以做個(gè)標(biāo)記,以后就不用再次復(fù)習(xí),這樣錯(cuò)題本使用起來(lái)就會(huì)效率更高。
3、做題要多反思
數(shù)學(xué)學(xué)習(xí)要大量做題去鞏固,但做題不要只講究數(shù)量,更要講究質(zhì)量,遇到經(jīng)典題,綜合性高的題目時(shí),每道題寫完解答過(guò)程后,需要進(jìn)行分析和反思,多問幾個(gè)為什么,這樣才能把題真正做透。
4、把數(shù)學(xué)知識(shí)形成體系
課本上的知識(shí)都是零散的,建議大家自己畫思維導(dǎo)圖把知識(shí)串起來(lái),畫思維導(dǎo)圖的過(guò)程,就是不斷理解,讓知識(shí)變成結(jié)構(gòu)的過(guò)程。
高一數(shù)學(xué)必修一知識(shí)提綱相關(guān) 文章 :
★ 高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)
★ 高中數(shù)學(xué)必修一復(fù)習(xí)提綱
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理
★ 高一數(shù)學(xué)必修1知識(shí)點(diǎn)歸納
★ 高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)必修一的知識(shí)點(diǎn)
★ 人教版高中數(shù)學(xué)必修一知識(shí)點(diǎn)
★ 高一數(shù)學(xué)必修一知識(shí)整理
★ 2021高中數(shù)學(xué)必修一復(fù)習(xí)提綱
三、山東高一人教版數(shù)學(xué)配套試卷練習(xí)冊(cè)有哪些
1.高中必刷題
此練習(xí)冊(cè)為同步練習(xí),比較適合當(dāng)天講完課寫完作業(yè)刷,會(huì)對(duì)知識(shí)全方位地掌握,個(gè)人認(rèn)為難度中等,內(nèi)部排版很有儀式感,練基礎(chǔ)首選。(其他科目、學(xué)年找我要)
2.一遍過(guò)
形式和必刷題類似,也很推薦(其他科目、學(xué)年找我要)
3.高考必刷題
這套比較綜合了,比較適合全面復(fù)習(xí)時(shí)使用,有難題,總體以基礎(chǔ)為主如果您分?jǐn)?shù)在110到130之間比較推薦這套(其他科目、學(xué)年找我要)
四、高一數(shù)學(xué),求詳細(xì)解答
4.145 由題可得d=3,a1=1,
所以an=1+3(n-1)=3n-2
a10=28
所以S10=(1+28)x10/2=145
5.x軸:1/3 y軸:-1 將x=0和y=0帶入即可
加油鴨?。?!
以上就是關(guān)于高一數(shù)學(xué)優(yōu)化學(xué)案人教版相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會(huì)為您講解更多精彩的知識(shí)和內(nèi)容。
推薦閱讀:
網(wǎng)紅和明星誰(shuí)收入高(網(wǎng)紅和明星誰(shuí)收入高一點(diǎn))
世界大學(xué)排名哪個(gè)認(rèn)可度高(世界大學(xué)排名哪個(gè)認(rèn)可度高一點(diǎn))
發(fā)小紅書的注意事項(xiàng)(發(fā)小紅書的注意事項(xiàng)怎么寫)
問大家
濟(jì)南婚姻介紹中心哪家比較好呢?正規(guī)、信譽(yù)度高一些的。
濟(jì)南婚介哪家專業(yè)踏實(shí)靠譜?誠(chéng)信度高一些的,規(guī)模大的
我們大濟(jì)南婚介公司哪家比較好呢?專業(yè)正規(guī)、誠(chéng)信度高一些的。
濟(jì)南單身找對(duì)象婚介機(jī)構(gòu)哪家比較好呢?正規(guī)、信譽(yù)度高一些的
泉城濟(jì)南哪家的單身找對(duì)象交友平臺(tái)比較正規(guī)比較好?靠譜點(diǎn)的